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Abstract—The content request patterns perceived by edge
devices are becoming highly dynamic, especially for emerging
short video platforms compared to traditional video platforms.
This calls for caching policies that can continuously adapt to
dynamic environments, challenging previously popular reinforce-
ment learning (RL)-based policies. A straightforward solution,
i.e., repeatedly restarting and training RL agents, would fail to
converge timely while meeting the observed adaptation process.
Offering transferable knowledge is considered a possible method
to speed up the adaptation process. Unfortunately, it fails to
outperform the RL-based approach as an alternative solution
in these scenarios. To alleviate this drawback, we 1) design
a sequential-pair meta-learning for edge caching that captures
the meta-knowledge of dynamic changes from sequential-pair-
wise intervals, which are segmentations from the whole dynamic
episode, and 2) develop an online meta-RL-based solution called
Online Meta Actor-Critic (OMAC), which updates the meta-
knowledge in an online manner. To evaluate the proposed
framework, we conduct trace-driven experiments to demonstrate
the effectiveness of our design: it improves the average cache hit
rate by up to 37.4% (normalized) compared with other baselines.

Index Terms—edge content delivery, dynamic caching policy,
meta-learning, reinforcement learning

I. INTRODUCTION

Video streaming has achieved skyrocketing growth in recent
years, accounting for 80% of the whole internet traffic and
being triple by the end of 2022 [1], [2]. Moving content
distribution to the edge of the internet can alleviate the
backbone workload and improve the quality of experience
for streaming users [3]. Such video content serving is usually
referred to as edge content delivery.

With the rapid revolution of video platforms, the request
patterns in edge devices have shown to be much more dynamic
compared with the traditional ones [4]. For instance, our
measurement study of KuaiShou (c.f. Sec. III), one of the
most prominent short video platforms, shows the content
request pattern difference between days measured by Kull-
back–Leibler (KL) divergence increases by 35.1%, compared
with traditional video platforms. This significant value indi-
cates that the request pattern varies over time.

Such dynamic request patterns have challenged existing
content caching methods in edge content delivery: Traditional
methods with prior assumptions, including Least Recently
Used (LRU), Least Frequently Used (LFU), and their variants
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[5]–[7], fail to adapt to the dynamic environment as they
are based on simple rule-based policies with some manually
set features. Reinforcement learning (RL)-based caching
policies [8]–[10] have been verified to achieve a higher hit
rate than conventional rule-based policies. However, they are
designed with the assumption of a stationary and static envi-
ronment. In contrast, this assumption contradicts the dynamics
of edge request patterns and has been illustrated by our
measurements (c.f. Sec. III-A). When it is applied in dynamic
edge content delivery, this assumption cannot be ensured,
which usually causes the performance drop, as illustrated in
Fig. 1(top) and observed in Fig. 5. One possible reason is
that the dynamic request pattern would gradually impair the
stationary assumption, leading to a continuous degrade of real-
time performance. Remedy studies on RL-based methods,
including ones using manual features [11]–[13] and others
using a recursive network architecture to extract the dynamic
features [14], [15], still suffer from the dramatically changing
environment of edge scenarios.

To get rid of the outdated data influence caused by edge
dynamics, a straightforward solution is to restart and train
the RL model repeatedly with new edge samples. However,
the RL model needs a pretty long adaptation time to attain a
good performance (c.f. Sec. III-B); therefore, we need a new
framework to speed up this process. We consider offering some
transferable knowledge for the RL model when a new dynamic
task is upcoming. To face the challenges above, meta-RL is
expected to be a promising solution as it has been verified
to achieve great adaption for new environments in other field
works [16], [17]. However, directly using meta-RL would even
perform worse than vanilla RL methods in edge caching, as
illustrated in Tab. II. One possible explanation could be that
plain meta-RL is designed for multi-task adaptation in static
environment, which would ignore the dynamic feature in the
edge caching.

How to make meta-RL suitable for this dynamic edge
environment? We give two key design objectives here: 1)
The meta-learning should capture the transferable temporal
knowledge to enable adaptation to a dynamic environment;
2) The meta-knowledge should be updated continually to
maintain timeliness. To achieve 1), we reformulate meta-RL
by segmenting the dynamic episode into a sequence of short
intervals, and then leverage meta-RL to gain the knowledge of
the dynamic changes from sequential-pair intervals, as shown
in Fig. 1(bottom). For 2), we propose an online meta-learning
paradigm based on the Online Gradient Descent (OGD) to



Fig. 1: A comparison of the previous RL-based framework with our online meta-RL-based framework when dealing with
dynamic edge caching problems. Left: The request patterns in edge content delivery are temporally dynamic. Middle and
right top: RL-based caching policies only capture empirical knowledge that is uniformly learned from historical data, and thus
is gradually corrupted by the outdated data, leading to a performance drop. Middle and right bottom: Our online meta-RL-
based method can extract the real-time sequential-pair meta-knowledge of the dynamic changes, which enables fast dynamic
adaptation. The model is then adapted from real-time meta-knowledge and new data samples, and thus gets rid of the negative
effect of the outdated data and adapts quickly to the changing edge environment, leading to a consistently good performance.

maintain the “freshness” of meta-knowledge.
Combining the two efforts above, we present an Online

Meta Actor-Critic (OMAC) framework to solve the dynamic
edge caching problem. To verify the efficacy of OMAC,
we conduct experiments using real-world traces from IQIYI
and KuaiShou platforms. The results show that our solution
consistently performs better than baselines in all 56 randomly
selected edge areas. Our ablation studies demonstrate that
sequential-pair designing and online updating contribute to
performance gains.

The contributions can be summarized as:
• We discover the dynamic property of edge request pat-

tern, demonstrating that it leads to the performance drop
of vanilla RL-based methods.

• We show that plain meta-learning fails to improve the
performance of RL-based algorithms and develop a
new framework called the online sequential-pair meta-
learning framework capable of handling the dynamic
edge caching: 1) the sequential-pair design provides a
general knowledge for dynamic changes; 2) the online
update helps keep the knowledge effective along the time.

• We achieve state-of-the-art performance in both short
and traditional video platforms, which outperforms in the
short video platform where the dynamic is more severe.

II. RELATED WORK

A. Rule-based and RL-based Caching
Conventional caching policies cannot adapt to the dynamic

edge environment since they make content replacements based
on hand-designed rules that are not adaptive and not robust in
edge caching situations [18]. Some recent rule-based methods
[19]–[22] rely on strong prior assumptions on popularity dis-
tributions, and models with these assumptions are widely used

in the video on demand systems, such as uniform distribution,
Gaussian distribution, and Zipf distribution. However, the
dynamic request patterns cannot be accurately modeled as a
stochastic process [3], leading to limited generalization ability.

RL is a powerful framework for designing caching strategies
to deal with caching problems without prior assumptions [23],
[24]. It has been shown that RL-based methods achieve better
hit rates than traditional strategies in practical scenarios [8]–
[10], [25], [26]. Somuyiwa et al. proposed a policy-based
method [10] to solve the content replacement problem under
unknown data distribution. Luong et al. [25] applied value-
based methods to use the value function to find the nearly
optimal solution with the “ε greedy explore” in the adaptation
process. Zhu and Cao et al. developed actor-critic strate-
gies [9], [26] to leverage the on-policy strategy to optimize
the agent parameter in little steps. However, all the above
methods cannot quickly adapt to the edge environment be-
cause of dynamic request patterns. They use out-dated request
histories to do the gradient decent and would conquer a sudden
performance drop.

Other models [11]–[13] that are based on manually designed
features to overcome dynamic changes have been developed.
Guan et al. [11] built a featured collector of frequency and
duration for further critical feature learning. Kirlin et al. [13]
assumed causal knowledge of the channel quality, the content
profile, and the user-access behavior to model the proactive
caching problem. Zhong et al. [12] applied frequency infor-
mation to face the dynamic environment. However, the hand-
designed heuristic works are only for exceptional cases and not
general to diverse situations of edge caching environments.



B. Meta-RL

Meta-learning [27], [28] provided a powerful framework to
capture the uniform transferable knowledge for improving the
model adaptation ability. Many works tried to enhance the
effectiveness of the meta-framework in reinforcement learning.
Duan et al. [29] proposed RL2, which applied recurrent neural
networks to serve as dynamic task embedding storage. Finn et
al. proposed MAML [37], where a bilevel optimization learns
the optimal initialization, accelerating the model adaptation
when it meets a new task. Faktor et al. [30] proposed meta
Q-learning for a more accurate function approximation. Yang
et al. [31] focused on multi-task RL using soft modularization
to adjust the temperature factor between each training task to
better converge. However, the above works are designed to
capture uniform transferable knowledge, thus not suitable for
dynamic scenarios.

Al-Shedivat et al. [32] attempted to solve the continuous
adaptation problem for dynamic environments and proposed
to capture the dynamic changes. But, the meta-knowledge
remains unchanged after meta-training, leading to the ef-
fectiveness decay. Online meta-learning [33], [35] merges
ideas from both online learning and meta-learning to better
capture the spirit and practice of continuous lifelong learning.
However, they need to consider the sequential dependence of
continuously changing environments.

In summary, no previous meta-RL design is suitable for
learning under severe and continuous dynamic environments,
e.g., caching environments, especially for the short video
platform. Our OMAC policy addresses this by the design of
online meta-learning from the sequential-pair objective.

III. DYNAMIC PROPERTY OBSERVATIONS

In this section, we introduce our discoveries: the dynamic
property on request popularity (i.e., distribution of different
contents) and quantity (i.e., the number of requests of all
contents), which challenges the previous works that depend
on stationary assumptions. We then show that such a dy-
namic edge request pattern would impair the vanilla RL-based
method, driving the demand for a meta-RL framework.

A. Observations from Real Traces

In this trace-driven study, we examine two real-world
datasets that contain user request traces collected from two
of the largest Chinese video platforms, i.e., IQIYI, featuring
long-form video content, and KuaiShou, featuring short-form
video content. Each contains video-watching request traces
over 13 days from randomly sampled 56 edge areas with a
service range of 2.05km×2.31km in Beijing. Each valid user-
item trace contains information, including timestamps, video
content ID, and the location of each request. We focus on two
perspectives in our trace-driven study, especially targeting the
dynamic features of edge caching:

1) Temporal dynamic on request popularity: To visu-
alize the request pattern, we first study the heterogeneity
of the temporal dynamic of video requests from edges. We
calculate the request distributions of each day and plot the

Fig. 2: The KL divergence of temporal content distribution
among platform IQIYI (a) and KuaiShou (b).
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Fig. 3: Request frequency of each area during the whole time
among platform IQIYI (a) and KuaiShou (b).

KL divergences between them in Fig. 2a and Fig. 2b. This
measurement is conducted in 56 different areas to eschew
the exceptional cases, and we present the average results. The
fact that KL divergence values are generally higher than 15.0
indicates that the edge caching environment is highly dynamic
over time. A significant KL divergence value indicates that
the respective content popularities are significantly different
and impossible for a static distribution to fit along the time.
The dynamic is more severe on the short video platform, as
shown in the KuaiShou dataset, where most KL divergence
values exceed 31.47. This dynamic property requires cache
strategies to have higher adaptability in the severely changing
environment. In particular, the caching strategy has to adapt to
the current environment using a few real-time samples since
the historical data is outdated under edge caching situations.
Furthermore, as shown in Fig. 2a and Fig. 2b, the popularity
divergence is positively correlated to the time span, suggesting
that the content popularity is continually changing instead of
just verifying the non-stationarity.

2) Highly variable request frequency: We next observe the
dynamic of request frequency. Fig. 3a and Fig. 3b visualize the
request frequency of each area during the whole time, where
the x axis represents the time slot, the y axis represents edge
ID (56 selected areas), and the value represents the requested
quantity during an hour. We observe that the request frequency
is highly variable, e.g., the highest number is more than 1500,
and the lowest one is below 200 in the KuaiShou dataset,
indicating the change of edge request pattern. In Fig. 4a and
Fig. 4b, the curves represent the request frequency of each
content over time. We observe that the frequency change is
also highly variable among different contents, indicating that
they share no uniform pattern. This observed result suggests
that the cache policy needs to conclude a general knowledge
to deal with the dynamic of request pattern.

In summary, 1) and 2) show that the request pattern con-
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Fig. 4: Request frequency of contents among platform IQIYI
(a) and KuaiShou (b).

Fig. 5: The performance drop of vanilla RL-based caching
strategy among platform IQIYI (a) and KuaiShou (b).

tinually changes in popularity and quantity, and each kind of
content has its pattern. This demands caching strategies to
become adaptive to deal with dynamic environmental changes
and to become model-free to face different patterns.

B. Challenges to Previous RL-based Methods

Fig. 5a and Fig. 5b illustrate how the performance of the
RL-based method [9] changes over time. There are two main
observations here:

i) The performance increases in the beginning: To begin
with, the hit rate gradually increases and attains the highest
(the peak). Since the request popularity is continually chang-
ing, the environmental change is not severe and can still be
considered relatively stable. Therefore, the RL model could
perform to increase the hit rate. We notice that it takes a long
time of 23 hours and 70 hours for the RL-based method to
attain the peak in IQIYI and Kuaishou traces.

ii) The performance drops a lot in the long term: The
hit rate decays obviously after the peak. Along with the
request popularity changes over time significantly, the RL-
based method would gradually fail after the peak because
most traditional RL models have the assumption of a stationary
and static environment [14], [15]. The reason is that in edge
caching, the dynamic request pattern would continually impair
the stationary assumption, i.e., the outdated historical data de-
grades the real-time performance of the RL model. Therefore,
the RL-based method could not achieve high performance
under the edge’s dynamic environment, especially for today’s
short-term video-sharing platforms.

These two phenomena raise a question: how to eschew
the performance drop and maintain the highest performance
during the whole episode?

C. Motivation towards Meta-Learning

To counter the performance decline, a natural idea is to
segment the dynamic episode into multiple short intervals.

A re-initialized RL model may appropriately handle each
interval. The initial motivation is that the continually changing
distribution impairs vanilla RL-based methods’ “long-time”
performance (though it is continually updating with new data),
as shown in Fig. 3. It is expected that, after running initialized
RL model on each short interval, the model can escape from
the historical data disturbance and reach a “short-time” good
performance, as RL model can reach the “peak” in Fig. 5a and
Fig. 5b. However, simply restarting the model could make it
more difficult to converge, as it takes a relatively long time to
collect enough samples (23 hours in IQIYI and 70 hours in
Kuaishou for adaptation), and we observe that purely restarting
the RL model degrades the performance in Table II.

Since it takes a long time to attain the peak performance,
to shorten the adaptation time, we consider offering trans-
ferable knowledge (i.e., the meta-knowledge) to enable a
faster adaption to the re-initialized RL model when dealing
with a new time interval. We adopt meta-learning [37] to
enhance the initialization. Considering the severe dynamic of
the edge caching environment, we also refresh the transferable
knowledge to better fit the changing environment’s general
features.

Therefore, we propose a new meta-RL-based caching solu-
tion for dynamic edge caching.

IV. PRELIMINARY

In this section, we present some preliminary concepts of
RL-based caching and meta-learning. First, we introduce the
system model for RL-based edge caching, where we give
necessary notations and definitions. Second, we introduce the
basic meta-learning captions.

A. RL-based Edge Caching

We study a system of one edge cache with a maximum
storage capacity size S. We denote the index set of library for
equal size content files by F = {1, 2, · · · , C}, and the request
is made for f ∈ F in each time slot t. We further denote the
numbers of requests to content f in time slot t as Numt

f .
A binary variable xt

f is used to represent whether content f
is requested (xt

f = 1) or not (xt
f = 0) at time slot t, as a

flag variable. We also use a binary indicator ytf to represent
whether video content f is cached (ytf = 1) or not (ytf = 0).
When content f is requested at slot t and found in the cache
ct = {c1, · · · , cS}, it is called a hit, otherwise a miss.

Our goal is to maximize the hit rate, i.e., minimizing the
content transmission cost. The content transmission cost within
a piece of time period of the edge e could be calculated as:

min : Lt
e(transmit) =

∑
f

Numt
f · xt

f · (1− ytf )

With the restrictive conditions:∑
f

ytf ≤ S, ∀f ∈ F (1)

Eq. 1 indicates that contents are cached in an edge server
which has a finite memory.



In traditional RL, the agent tries to make proper decisions
towards optimization goals based on past experience and
given rewards. In particular, the agent observes the state st
of the task environment T in each time slot t and takes
an action at according to the policy π with parameter ϕ.
Then the agent gets the reward rt and transfers to state
st+1. We then denote the trajectory as a sequence τ =
(st, at, rt, st+1, · · · , sW , aW , rW ), and the agent samples K
trajectories τ1:K based on the previous Markov decision
process, with a time window W . The agent then updates to
a new policy. The goal of the learning process is to find an
optimal policy π∗ that can maximize the expected discounted
cumulative reward R =

∑W
1 γtrt, where γ is a discount

factor that reduces the importance of future rewards. The
optimization goal of the RL-based method is to:

min
ϕ

lT (ϕ) = EτT ,ϕ∼PT (τ |ϕ)
[
−R1:K | τ1:KT,ϕ , ϕ

]
(2)

where R1:K =
∑K

i=1 R
i and Ri is the discounted cumulative

reward for trajectories τ i. Then, we use Eq. 3 to update the
parameter ϕ.

ϕ = ϕ− α∇ϕlT (ϕ) (3)

We next present the details for edge caching policy, in-
cluding the state, the action, and the reward. The state of
the agent includes the current content request and the caching
situations (st = {xt

1, · · · , xt
C , c

t}). After being fed the state,
the agent gives the action at ∈ [1, S + 1] based on its
policy π. If at = S + 1, the agent will not do the content
replacement. Otherwise, the caching content in position i will
be replaced, when at = i. New arrived content IDs are
also applicable to the adapatation process, since it concerned
only the cached and incoming requested status instead of
specific IDs [10]. After this action, the agent receives a reward
rt =

∑N
f=1(Numt

f ∗ xt
f ∗ ytf + max{ytf − yt−1

f , 0}) and the
state changes to st+1.

B. Meta-learning

In meta-learning settings, the goal is to enable an agent
to quickly acquire an effective policy for a new coming task
environment, using a small amount of experience or samples
in adaptation iterations [37].

To achieve this, it learns a meta initialization θ from a
set of tasks {T1, T2, . . . , TN}, such that at meta-test time,
performing a few steps of gradient descent from θ using
new trajectories minimizes the loss on each Ti. To get such
an initialization when meta-training, it solves the following
optimization problem:

min
θ,α

N−1∑
i=1

LTi(θ, α) =

N−1∑
i=1

E τTi,θ
∼PTi

(τ |θ)

τTi,ϕi
∼PTi

(τ |ϕi)

[
−R1:K

Ti
| τ1:KTi,ϕi

, ϕi

]
where ϕM

i =h(τ1:KTi,θ , θ, α), i = 1, · · · , N − 1
(4)

Where we denote the policy parameter in the meta-learning
part (the outer loop, i.e., the optimized objective) as θ and
the policy in the meta-adaptation part (the inner loop, i.e., the
constrain) as ϕ. To obtain policy parameter ϕ adapted from
θ, h denotes an adaptation rule that maps the initialization
(i.e. meta-knowledge) to an adapted agent ϕ. Specifically, from
initialization θ with adaptive stepsizes α =

{
α1, α2, · · · , αM

}
on trajectories τ1:KTi,θ

, h is subsequently carried out by M−steps
gradient decent:

ϕm
i =

{
θ, τ1:KTi,θ

∼ PTi(τ | θ),m = 0

ϕm−1
i + αm∇ϕm−1

i

[
R1:K

Ti
| τ1:K

Ti,ϕ
m−1
i

, ϕm−1
i

]
where M ≥ m > 0

(5)

V. ONLINE SEQUENTIAL-PAIR META-RL FRAMEWORK

In this section, we present our online sequential-pair meta-
learning framework for edge caching. First, we restruct the
meta-RL with the proposed sequential-pair meta loss for meta-
knowledge of dynamic caching tasks. Second, we use an
online manner to update the meta-knowledge, and maintain its
long-term effects. Finally, we present our Online Meta Actor-
Critic (OMAC) caching algorithm for practical usages.

A. Sequential-pair meta-RL design

We use a sequential-pair meta-RL design to reformulate
the meta-RL framework, which is specially designed for
continually changing environments. As described in Sec. III,
we segment the dynamic episode of the edge environment
into a series of intervals as the sub-tasks. The RL agent is
reinitialized in each sub-tasks. For the overall goal is to realize
a fast adaptation when the sub-task switches, we use meta-RL
[37] to re-initialize the RL agent with a learned initialization,
i.e., the meta-knowledge.

To measure the quality of this meta-knowledge, specifically,
we apply a sequential-pair (meta) loss LTi,Ti+1

to evaluate the
adaptation (from the i-th environment Ti to the consecutive en-
vironment Ti+1). Derived from Eq. 2 and Eq. 4, the objective
function of our sequential-pair meta-RL is:

min
θ,α

N−1∑
i=1

LTi,Ti+1
(θ, α) =

N−1∑
i=1

E τTi,θ
∼PTi

(τ |θ)

τTi+1,ϕi
∼PTi+1

(τ |ϕi)

[
−R1:K

Ti+1
| τ1:KTi+1,ϕi

, ϕi

]
where ϕi =h(τ1:KTi,θ , θ, α), i = 1, · · · , N − 1

(6)
The function h denotes the same as Eq. 5. We notice

that the sequential-pair meta loss is not much different from
the original one in Eq. 4, by changing the inner expectation
on Ti to Ti+1. This is specialized to deal with dynamic
environments. In more detail, it firstly samples trajectories
τTi,θ from task Ti using policy πθ parameterized by meta-
knowledge θ. Through the adaptation process (adaptation rule
h) from trajectories τTi,θ with initialization θ, we get the
adapted policy πϕM

i
. The process then evaluates the adapted

policy πϕM
i

by sampling trajectories τTi+1,ϕ from task Ti+1

with adapted policy πϕM
i

. The objective function measures the
adaptive performance from a sequential-pair view, where the
initialized policy θ first learns from Ti and then evaluates from



Fig. 6: An illustration of the sequential-pair meta loss. Com-
pared with the loss used in previous RL-based frameworks, our
sequential-pair meta loss measures the dynamic adaptation of
the meta-knowledge θi by evaluating the performance of the
adapted model ϕi on a consecutive task.

consecutive task Ti+1. It measures the dynamic transferable
efficacy of meta-knowledge θ, and is suitable from dynamic
edge caching.

Intuitively, this optimization aims to search for a good
initialization θ and stepsizes α, such that the adapted policy
πϕ (computed on the trajectories sampled from Ti) is good
for solving Ti+1. This process imitates the dynamic adaptation
from an old environment to a new one for the RL models. The
sequential-pair loss measures the dynamic changes between
two environments and how the adapted policy πϕ performs in
the new environment to learn general dynamic information.
Therefore, the RL agent initialized by the optimal meta-
knowledge θ∗ can fast adapt to the new environment through
multiple steps adaptation with the optimal stepsizes α∗. The
diagrammatic sketch of sequential-pair meta-RL is displayed
in Fig. 6, where we also demonstrate its difference with
empirical loss used in vanilla RL.

B. Online manner of meta-RL

Since the RL model collects the request trajectories from
the edge cache in an online manner, the global optimal θ, α
(in Eq. 6) are impossible to be determined since the agent
does not know the future environments. Specifically, when the
agent makes the decision in the environment indexed by i, it is
impossible to know the future environments indexed by i′ > i.

Thus, we propose to approximate the optimal in an online
manner by minimizing the regret:

Regret =
N−1∑
i=1

E[LTi,Ti+1
(θi, αi)]−min

θ

N−1∑
i=1

E[LTi,Ti+1
(θ, α)]

(7)
where θi is the meta-knowledge of task i, and the regret is a
matrix for online decisions.

The validity of our approximation can be guaranteed to be
valid when a sublinear term of N bounds the regret, which
implies near optimal online solutions [38]. This bound is
achieved by Eq. 12, which we will discuss later in Sec. V-C2.
By those operations, the meta-knowledge θ could stay fresh
and effective along with the task T changes. Different from
traditional meta-RL, the meta-knowledge keeps updating and
maintains the good re-initialization performance of the agent.

C. The OMAC Caching Algorithm

In this subsection, we instantiate our online sequential-pair
meta-RL framework by using Actor-Critic. We present the

sequential-pair meta-RL loss with Actor-Critic in detail. Then
we give an overview of our OMAC (Algorithm 1).

1) Instantiation of OMAC: Since many previous value-
based RL methods maintain a reply buffer [24] that may suffer
from high memory cost, occupying too much cache memory.
Therefore, we instantiate our Meta-RL as Meta actor-critic,
alleviating the potential memory issue in edge caching. Ad-
ditionally, a soft-policy entropy bonus is introduced, inspired
by [28], together with the temperature factor µt, to encourage
the exploration.

The agent with parameter θ is updated by optimizing the
loss function with three parts: actor, critic, and entropy. Thus,
the total loss function is:

Ltotal
Ti,Ti+1

(θ, α) = Lactor
Ti,Ti+1

(θ, α)+µtHTi,Ti+1
(θ, α)+Lcritic

Ti,Ti+1
(θ)

(8)
Notice that the sequential-pair design is utilized to help the

agent adapt better with the continued changing request pattern,
which is further assessed in later Sec. VI-C. The specific
actor loss function (for training the Actor-network π) can be
described as:

Lactor
Ti,Ti+1

(θ, α) = E τ1:K
Ti,θ

∼PTi
(τ |θ)

τ1
Ti+1,ϕ∼PTi+1

(τ |ϕ)

ÂGAE · πϕ

(
τTi+1,ϕ

)∏K
k=1 πθ

(
τkTi,θ

)
πold
ϕ

(
τTi+1,ϕ

)∏K
k=1 π

old
θ

(
τkTi,θ

)
Rt =ÂGAE

t = (rt + γVt+1 − Vt) + γλAt+1

(9)

HTi,Ti+1
(θ, α) = E τ1:K

Ti,θ
∼PTi

(τ |θ)
τ1
Ti+1,ϕ∼PTi+1

(τ |ϕ)

[
H

(
πϕM

i

)
| τ1:KTi,θ , θ

]
(10)

Here, the AGAE with multi-step estimation is used to reduce
the gradient variance [23], reaching more precise estimation
results in dynamic edge scenarios.

Similarly to the actor loss, we also construct a cross
sequential-pair critic loss (for training the Critic network V )
aiming to better cache proper content in a dynamic scenario
(Temporal Difference update is utilized):

Lcritic
Ti,Ti+1

(θ) = E τ1:K
Ti,θ

∼PTi
(τ |θ)

τ1
Ti+1,ϕ∼PTi+1

(τ |ϕ)

[
∥Vt,ϕ−γVt+1,ϕ−rt,ϕ∥2

2

+∥Vt,θ−γVt+1,θ−rt,θ∥2
2

]
(11)

2) OMAC Pipeline: Based on our online sequential-pair
meta framework, we present our practical OMAC algorithm
(Alg. 1) which consists of two stages: Meta Pretraining
Process and Online Meta Adaptation.

i) Meta Pretraining Process (obtaining the meta-
knowledge with sequential-pair tasks): In the meta pretrain-
ing part of our framework, we use a small number of historical
request sequences to jointly update the three parameters θ,
µt, and α, to get the initial meta-knowledge. We use πϕ

adapted from πθ of Ti to collect the trajectories of Ti+1. The
main intuition is that the trajectories of Ti may contain some
transferable information suitable for Ti+1, since the sequential-
pair tasks are dependent to each other.

ii) Online Meta Adaptation (refreshing the meta knowl-
edge): OMAC updates the meta-knowledge by multiple-step



Online Gradient Descent (OGD) [38], i.e., for each day N+ i.
OMAC iterates the meta-knowledge by:

θ1N+i+1 = θ∗N+i,

θkN+i+1 = θk−1
N+i+1 + β∇θN+i+1

Ltotal
TN+i,TN+i+1

(θk−1
N+i+1, α),

(12)
where k = 1, · · · ,M, and the meta-knowledge for next round
is θ∗N+i+1 = θMN+i+1.

Intuitively, after the meta pretraining process providing an
initial meta-knowledge of N days of tasks, the online meta
adaptation part of our framework searches for fresh meta-
knowledge θ∗N+i to reach a better-adapted policy within only a
few samples from TN+i+1. Theoretically, this OGD-alike [38]
iteration is guaranteed to achieve a sublinear regret, which
ensures that the online meta-knowledge is nearly optimal [33].
Note that there exist works on caching with online learning
[34]–[36], [39], however is not RL-based. The meta-learning
phase aims to find some universal features as meta-knowledge
and obtains a transferable meta-knowledge θ∗N+i to help the
agent acquire a better adaptation rule.

D. Discussion

1) The advantage of sequential-pair reformulation: Our
sequential-pair meta-RL samples trajectories from environ-
ment Ti and Ti+1 in a sequential pair way, aiming to capture
dynamic changes that help the dynamic adaptation. The equa-
tions in Sec. V-A display their focus on the temporal feature
in the edge caching scenario. Note that the simple meta-RL
is design for multi-task learning, and ignores the information
from the time sequence.

2) The advantage of online update manner: When it
comes to the meta-adaptation stage, the offline version is
simply initialized by the meta pretraining parameters at the be-
ginning. Then, the model maintains the same meta-knowledge
during the whole process. However, since the content popular-
ity is continuously changing, the meta-knowledge should also
track this dynamic environment. Thus, the traditional meta-RL
methods may not guarantee the freshness for meta-knowledge
owing to the lack of online updating. Besides, without the
online update, it will lead to an attenuation of the generality
acquired by meta-pretraining, which implies a negative effect
when searching for the adaptation rule.

Oppositely, our online manner effectively uses the latest
caching information in the adaptation stage for fresh meta-
knowledge. Thus, both the past experience and current infor-
mation will be enriched to the OMAC caching policy.

VI. PERFORMANCE EVALUATION

In this section, we conduct comprehensive experiments to
evaluate the performance of the OMAC edge caching policy
on real-world traces from IQIYI and KuaiShou platforms.
First, we introduce the datasets, baselines, and implementation
details. Second, we present the experiment results and show
the superiority of the OMAC on both dynamic adaptability
and robustness. Finally, our ablation study shows that both the
design of sequential-pair and the online manner for meta-RL
updates are indispensable to performance gains.

Algorithm 1 Online Meta Actor-Critic (OMAC) Caching

1: Input: Number of Meta Pretraining days N , a dynamic
sequence of tasks T1, T2, · · · , TN , · · ·TN+i, TN+i+1.

2: Stage 1: Meta Pretraining Process
3: Randomly initialize θ1 and α1

4: repeat
5: Gain all sequential-pairs (Ti, Ti+1)i=1:N−1 from the

sequence.
6: for all Sequential-pair data do
7: Sample traj.τ1:KTi,θi

using πθi

8: Compute ϕM
i = h(τ1:KTi,θi

, θi, αi) using Eq. 5
9: Sample traj.τ1

T 1:K
i+1 ,ϕM

i
using πϕM

i

10: end for
11: Compute ∇θiL

total
Ti,Ti+1

(θ, α) and ∇αi
LTi,Ti+1

(θ, α) us-
ing Eq. 8.

12: Update θi+1 = θi + β∇θL(θ, α), αi+1 = αi +
β∇αL(θ, α)

13: until Convergence to obtain a meta-knowledge θ∗N and
α∗
N

14: Stage 2: Online Meta Adaptation:
15: while New task TN+i+1 from the dynamic tasks’ se-

quence do
16: Initialize Φi = θ∗N+i and αi = α∗

N+i

17: Deal with TN+i+1 using policy πΦi

18: Sample traj.τ1:KTN+i+1,Φi
while solving TN+i+1

19: Update Φi+1 = h(τ1:KTN+i+1,Φi
,Φi, α

∗
N+i) using PPO

with Importance Sampling.
20: for (TN+i, TN+i+1) sequential-pair do
21: Sample traj.τ1:KTN+i,Φi+1 using πΦi+1

22: Compute ϕ = h(τ1:KTN+i,Φi+1
,Φi+1, α

∗
N+i) using

Eq. 5
23: Sample traj.τ1:KTN+i,ϕ

using πϕ

24: Compute ∇θN+i,αN+i
Ltotal
TN+i,TN+i+1

(θ, α) using
Eq. 8.

25: Online update θN+i+1 = θ∗N+i + β∇θL(θ, α) and
αN+i+1 = α∗

N+i + β∇αL(θ, α) for M times to
obtain fresh meta-knowledge θ∗N+i+1 and α∗

N+i+1

26: end for
27: end while

A. Experiment Setup

Datasets: We collect content request records from platforms
IQIYI and KuaiShou in 13 days and extract the timestamps
and locations of each request. The IQIYI traces contains
53,954,230 requests of 417,077 contents and the KuaiShou
traces contains 52,852,160 requests of 1,746,227 contents.
Since the trace analysis shows that the request pattern is
different among areas, we randomly select 56 representative
edge areas (2.05km × 2.31km) as our edge regions to verify
the robustness. In addition, we vary the content delivery range
from 0.59km2 to 303.07km2 of an edge cache device to
evaluate the impact of the service range. In our experiments,
we assume that a caching agent located at the center of the
edge area will serve requests in this area.



Baseline methods: 1) Least Recently Used (LRU): the edge
cache device caches the most recently used content. 2) Least
Frequently Used (LFU): LFU counts the frequency of content
requests and evicts the least frequently used ones. 3) Deep
reinforcement learning (DRL) [9]: an RL-based policy with
A2C architecture makes a decision to only replace one cached
content with the requested content or not. 4) Reinforcement
learning with dynamic features (Adaptive-RL) [12]: an RL-
based caching policy uses manual features, i.e., the frequency
of each content among last 10, 100, 1000 requests. We
compare with LRU and LFU to demonstrate the advantage
of the RL-based methods than traditional approaches, with
DRL to demonstrate the efficacy of the designed online meta
mechanism for RL-based methods, and with Adaptive-RL to
show that the online meta-RL framework is more effective
than manually designed time-series features.
Implementation details: The default cache capacity for every
edge is set as 0.02% of all requested video contents. We im-
plement the OMAC learning model using TensorFlow, which
runs on a server with dual RTX 2070 GPU cards and 6GB
memory. The learning rate for meta-learning and meta updates
are set as 1e-3 and 2e-4. We set the discount factor γ as 0.99
by default. We consider the caching states of the past 7 time
steps as the retained number for LSTM. Besides, we set the
default meta pretraining days as 5, do MAML for 3 times per
adaptation round and update the meta-knowledge every day.

B. Evaluation Results

Verification of dynamic adaptability: We first verify the
dynamic adaptability of the OMAC strategy and display the
average hit rate (y axis) of the selected area within the whole
episode (x axis represents 13 days in total). The cache size
used for experiments is set as 0.02% of all requested video
contents. As illustrated in Fig. 7, we make the following main
observations:

1) OMAC has great dynamic adaptability. OMAC works
consistently well during the whole episode, while other base-
lines suffer from severe performance drop. Specifically, the
curves of baselines have the trend to decrease over time after
the peak, while OMAC maintains a high hit rate during the
whole episode. Though LFU and adaptive-RL perform better
in the initial stage, OMAC later keeps a hit rate of 19.3% in
IQIYI and 2.72% in KuaiShou, while making an improvement
over other baselines for 16.3% and 37.4%, respectively. This
demonstrates that OMAC can continuously adapt to the chang-
ing environment and keep a good performance. The reason is
that the initial environment can be viewed as relatively stable
when the time interval is short. Other baselines depending
on prior knowledge or stationarity may perform well at the
beginning. However, when the time interval becomes larger,
the inconsistency between the assumption and environment
is more significant, leading to a severe performance drop.
In contrast, in OMAC, the restart mechanism discards the
outdated historical data, thus gets rid of the assumption-
practice inconsistency. Besides, the designed sequential-pair
meta objective captures the meta-knowledge of the environ-
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Fig. 7: Average hit rate versus episode time among platform
IQIYI (a) and KuaiShou (b).
TABLE I: The average hit rate rank of all selected areas, with
90% confidence intervals for the mean over 56 areas.

OMAC DRL LFU Adaptive-RL LRU
IQIYI 1.0± 0.0 2.9± 0.8 5.0± 0.0 2.3± 1.7 3.8± 0.9

KuaiShou 1.0± 0.0 3.2± 0.9 5.0± 0.0 2.1± 0.8 3.7± 1.6

mental change, which helps the re-initialized model to adapt
quickly. The online update of the meta-knowledge maintains
its freshness and continually provides real-time adaptation
rules. Therefore, OMAC does not suffer from the performance
drop caused by the change of contents popularity.

2) OMAC shows more advantages when dealing with more
severe dynamic environments. The advantage of OMAC is
more significant on the short video platform, which shows a
more significant temporal dynamic as discussed in Sec. III.
Notably, the gap between the curves of OMAC and other
baselines in KuaiShou (Fig. 7b) is obviously larger than
in IQIYI (Fig. 7a), which demonstrates more superiority of
OMAC in such more severe dynamic scenarios. One possible
reason is that previous methods are based on either manual
rules (LRU, LFU), manual features (Adaptive-RL), or RL
algorithm for static environments (DRL), which are not so
adaptive to the dynamic caching environment. Therefore, the
performances of baselines drop in dynamic scenarios and get
worse when the dynamic becomes more severe.
Verification of robustness: As shown in our trace analysis
(Sec. III), the edge request pattern shows high spatial diversity,
which implies that these regions have different patterns. From
Fig. 8 of the average hit rate of 56 areas, the OMAC achieves
a hit rate improvement of 16.3% in IQIYI and 37.4% in
KuaiShou, demonstrating the effectiveness of our designs,
especially for the short video platform. As shown in the Tab. I,
the OMAC maintains the best performance among all 56 areas
in IQIYI and KuaiShou, showing that the outperformance is
robust to different request patterns. Adaptive-RL, LRU, and
LFU are designed with hand-designed heuristics, which are not
robust to diverse scenarios. DRL policy does not consider the
dynamic changes, and therefore suffers from the performance
drop for all dynamic situations.
Verification of generality for different cache sizes: We
evaluate the performance of the proposed method under the
impact of different edge servers’ cache sizes. We conduct the
experiment on five video content cache sizes, ranging from
0.02% to 0.10% with 0.02% size increase, respectively. As
illustrated in Fig. 9, we observe that OMAC outperforms
other baselines in all cache sizes. Our OMAC gains for a



Fig. 8: The average hit rate of OMAC and the baselines, with
90% confidence intervals for the mean over 56 areas among
platform IQIYI (a) and KuaiShou (b).
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Fig. 9: Average hit rate versus the edge cache size among
platform IQIYI (a) and KuaiShou (b).

16.3% to 33.2% improvement in IQIYI and 37.4% to 138.2%
improvement in Kuaishout than DRL method, on five different
cache sizes. The possible reason is that the OMAC learns a
better ranking of contents than other baselines, and therefore
the performance improvement is more significant when the
cache size becomes larger.
Verification of generality for different edge area sizes: To
evaluate the performance of the proposed method under the
impact of edge service range, we experiment on 10 edge areas,
ranging from 303.07km2 to 0.59km2 with 1/2 area decay
respectively. As illustrated in Fig. 10, we observe that OMAC
consistently outperforms other baselines in all service ranges,
which shows that OMAC is more suitable for different edge
service sizes.

In summary, OMAC shows a superior adaptation for dy-
namic environments, and performs consistently well in dif-
ferent areas with various locations and sizes, supporting the
general effectiveness of the online meta-learning framework.

C. Ablation Tests of OMAC

To assess the efficacy of the two main components, we
remove the meta-learning and online components of the frame-
work in turn and look at the changes in hit rate. The results are
reported in Tab. II, demonstrating that our proposed OMAC
framework achieves evident performance improvement with
all following components.
The effectiveness of sequential-pair meta-learning: Com-
paring with the vanilla DRL, DRL with our online sequential-
pair meta-learning achieves a hit rate increase of 2.3% (13.9%
improvement) in IQIYI and 0.49% (24.3% improvement) in
KuaiShou. Purely restarting DRL model degrades the perfor-
mance, because DRL model requires relative long exploration
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Fig. 10: Average hit rate versus the edge service range among
platform IQIYI (a) and KuaiShou (b).
TABLE II: Ablation experiment of different modules, hit rates
are listed (higher is better):

Vanilla DRL + Meta + Online IQIYI KuaiShou
• × × 16.6% 2.02%

•(restart) × × 15.2%(↓1.4%) 1.62%(↓0.40%)

• • (traditional) × 16.1%(↓0.5%) 1.79%(↓0.23%)

• • (sequential-pair) × 18.9%(↑2.3%) 2.51%(↑0.49%)

• • • 19.8%(↑3.2%) 2.72%(↑0.70%)

to adapt to a new environment without prior knowledge.
The traditional meta-learning, which is used for multi-task
learning, does not fit the dynamic sequence of the temporal
domain and performs even worse than vanilla DRL (a hit
rate of 0.5% and 0.23% worse than DRL in IQIYI and
Kuaishou). This demonstrates that our sequential-pair meta-
learning is suitable for the edge caching problem and could
significantly boost the performance when facing continuous
dynamic request patterns. The reason is that the sequential-
pair meta-learning can capture the dynamic meta feature,
which enables fast adaptation to the dynamic environment.
While meta-learning only captures the shared meta-knowledge
among all tasks and ignores the time-sequential order, it thus
fails to enhance the RL performance.
The effectiveness of online components: Comparing with
offline meta-learning, DRL with online meta-learning achieves
a hit rate increase of 0.9% (5.4% improvement) in IQIYI and
0.21% (10.3% improvement) in KuaiShou. This shows the
importance of online updating the meta-knowledge under the
continuous dynamic since the previous meta-knowledge would
gradually lose effectiveness over time, and it is reasonable to
update the meta-knowledge to keep it fresh regularly.

VII. CONCLUSION

In the paper, we study an open and difficult problem:
edge caching under continuously changing video popularity.
We first demonstrate such dynamic request pattern leads
to the performance drop of RL-based caching approaches.
To get rid of this performance drop, we then develop an
online sequential-pair meta-RL framework that is used for fast
adaptation in dynamic environments. The key design consists
of sequential-pair meta-knowledge that captures the dynamic
changes, and an online manner that keeps this knowledge
fresh. The experimental results support our design by the
significant outperformance compared to baselines, and demon-
strate the efficacy of each component.



Our results take the first step towards meta-learning to solve
the dynamic caching problem. Our framework can be easily
integrated into various scenarios with temporal dynamic, e.g.,
multi-agent caching, cooperative caching.
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