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Abstract—Federated Learning (FL) enables multiple clients to
jointly train a global model without exchanging their individual
data. Due to the diversity of data and systems in FL systems,
conventional global training methods are insufficient. Person-
alized techniques have thus been explored. However, existing
approaches concentrate mainly on modifying model parameters
rather than model structures. This paper presents FedKMA, a
personalized FL framework that identifies the optimal architec-
ture for each client to fully reflect its characteristics. FedKMA
employs the neural architecture search (NAS) approach in a
federated setting to personalize model structures. To reconcile
collaboration and personalization, FedKMA features a knowledge
sharing algorithm that uses the intermediate results of local
inference. The algorithm generates a knowledge sharing matrix
to determine the weighted aggregation weights by capturing
the similarity of learning results among clients. Thus, FedKMA
achieves a balance between collaboration and personalization.
Experiments on several benchmark datasets reveal that FedKMA
significantly outperforms the existing state-of-the-art in terms of
accuracy.

I. INTRODUCTION

Federated learning (FL) [18], [30] allows for collaboration
among clients without sharing private data. The goal of FL
is to generate a global model aggregated from local models
trained by clients [40]. However, due to the heterogeneity of
clients, including differences in data and systems, the benefit
of collaboration is limited [23]. This has led to an increased
focus on personalized FL, which allows clients to train on
different models instead of one identical shared model [36].
Personalized FL has enabled clients to achieve better local
performance, but most efforts have only focused on varying
model parameters, ignoring the benefits of personalized model
structures [8], [9], [15]. The mismatch between model struc-
tures and client characteristics can cause various problems. Al-
locating complex models to clients with limited computational
resources can lead to lower convergence and higher resource
consumption, and mismatching between model complexity and
data features can result in overfitting or underfitting. Therefore,
we propose allowing clients to train on heterogeneous model
structures for improved local performance, including higher
accuracy and faster convergence rate.
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Fig. 1: An illustration of personalized FL with model het-
erogeneity. For the purpose of obtaining model heterogeneity
while saving computational resources, the clients train on
different models and the server obtains different personalized
models after aggregating.

Despite the benefits of applying model structure person-
alization, great challenges still exist. First, it is difficult to
allocate suitable models to clients without knowing their char-
acteristics including local data distributions and other system
capacities [41]. Models should be assigned based on client
characteristics, as mentioned previously. However, the allocat-
ing strategies are no longer effective while the client features
are unknown to the server. Second, aggregating models with
different structures remains a problem. Since the aggregating
in FL is actually a weighted average among vectors with the
same size, the model parameters are no longer additive when
they are in different shapes [34]. Moreover, most of the person-
alized FL methods require clients to perform local fine-tuning.
However, the local fine-tuning on model structures brings extra
computational overhead [39], [42], since structure fine-tuning
requires supernets with much larger parameter space, thereby
resulting in extra computational resource consumption. Thus,
the structure fine-tuning slows down the entire training process
while the federated clients are often resource-constraint [26].

To overcome these challenges, we propose FedKMA—a



personalized Federated learning framework via Knowledge-
sharing based Model structure Adaption. FedKMA focuses on
maintaining model heterogeneity in FL system while pursuing
higher local performance. To achieve that, FedKMA tackles
the first two technical challenges above by leveraging the
neural architecture search [28] techniques to allow clients
to search optimal models on the same super-network. On
the basis of neural architecture search, we further propose a
knowledge sharing algorithm that denotes the proportion in
which the local models are shared with others, in order to
lighten the computational consumption caused by local fine-
tuning in the model heterogeneous FL system. Different from
existing FL algorithms which evaluate client relevancy by
computing the distances among updated gradients/parameters
[10], [33], our knowledge sharing algorithm computes clients
relevancy by computing the KL-divergence between the aver-
aged inference logits from each client.

Our key contributions can be summarized as follows.
1) We propose FedKMA, a personalized FL framework

with local model structure adaption under heterogeneous
settings. We leverage neural architecture search in Fed-
KMA to allow clients to search for their optimal local
model structures, which also addresses the challenge
of coordinate-wise aggregation in personalized FL with
model structure adaption.

2) Within FedKMA, we propose a knowledge sharing
algorithm based on inference logits and local model
structures to determine the aggregating proportion. The
knowledge sharing algorithm evaluates the learning sta-
tus of clients through logits to determine the proportion
of personalized aggregation and achieves personalized
allocation.

3) Our evaluation results demonstrate that FedKMA brings
enhancement to data heterogeneous FL by involving
personalized models and improving the local inference
accuracy by 0.4%-32% for each client. FedKMA also
shows the ability to capture client relevancy.

II. RELATED WORK

In this section, we first introduce efforts in traditional
personalized FL that do not support model heterogeneity.
Then, we introduce model heterogeneous personalized FL
which allows clients to train on different models.

A. Traditional Personalized FL

The personalized FL methods emerged as a new solution
for addressing heterogeneity in FL. Instead of training one
global model collaboratively, personalized FL tries to find
optimal models for each client. Existing efforts achieved
personalization mostly by parameter adjustment. Some efforts
are based on multi-task learning while [6], [35] enabled clients
to learn similar models, [9], [11], [17] regularized local models
from a global model, [15] proposed FedAMP that enforces
pair-wise collaboration among FL clients with similar model
parameters. Some methods focused on the post-processing

(e.g., fine-tuning on the global model) [1], [5], [25] which
also showed efficiency.

There also exists a series of approaches that focused on
partitioning clients into different homogeneous groups and
performing classical aggregation [3], [12], [33]. However,
these efforts failed on allowing clients to train on different
model structures.

B. FL with Model Heterogeneity

There are two main types of approaches to support model
heterogeneity, which are knowledge distillation-based and
pruning-based approaches. Instead of requiring clients to share
model parameters of the same size or dimension, knowledge
distillation-based approaches require clients to share interme-
diate learning results (e.g., logits) to accomplish knowledge
migration [4], [14], [21], [32], thus enabling different clients
to train models with different structures. The pruning-based
approach, on the other hand, assigns the same dense network
to all clients in the initial stage and requires clients to complete
pruning individually in the training process, thus eventually
achieving model heterogeneity among clients.

FD [16] and FedMD [21] allowed the server to collect the
class scores (e.g., logits) of the public data set on each client
model, and obtain the average logits as the updated consensus.
FedDF [27] leveraged ensemble distillation for model aggrega-
tion. KT-pFL [41] updates the personalized soft prediction of
each client by a linear combination of all local soft predictions,
thus allowing model aggregation among various backbones.
Compared with other personalized approaches, KT-pFL ex-
periences roughly performance degradation. Moreover, almost
all the methods based on knowledge distillation required a
carefully-designed public dataset based on prior knowledge
of local data distributions, which is conflicted with the FL
settings.

Other approaches achieved model heterogeneity by pruning,
e.g., generating sub-networks through a super-network or
by pruning global models into personalized ones [20], [29].
HeteroFL [8] applied personalization by assigning models with
different sizes to clients with heterogeneous computational
capacities. FedNAS [13] and SPIDER [31] utilized neural
architecture search yet paid less attention to balance model
structure and parameters sharing and personalization.

In summary, existing methods usually focused on hetero-
geneous model fusion or model structure adjustment while
there is rarely research focused on mitigating both the model
allocation and model fusion under model heterogeneous set-
tings. In this paper, we will propose a personalized FL
framework that obtains local optimal models and performs
personalized aggregation simultaneously. Our method involves
both the insight of knowledge distillation-based and pruning-
based methods while avoiding the disadvantages of previous
methods.

III. BACKGROUND AND PRELIMINARIES

In this section, we first introduce the problem setting of per-
sonalized FL. Then, we introduce the background knowledge



of differential NAS and why we choose differential NAS for
model structure adaption.

A. Formulation of Personalized FL

In this section, we give a formulation of personalized
FL. Different from existing personalized FL approaches that
request clients to adjust their local optimization objective
functions, we only revise the model aggregation settings for
both simplicity and efficiency.

We first introduce a FL settings with N clients holding with
isolated data sources D = {D1,D2, · · · ,DN}. For data source
Di of client i, Di = {(xu, yu)}|Di|

u=1. We notate the inference
loss value of client i as L(θi). We also notated θi as the
model parameters from ith client and θg as the global model
parameters generated by the server. The goal for most of the
FL frameworks is to generate a global model which can be
formulated as

θg =

N∑
i

piθk, where θi = argmin
θi

Li(θi) (1)

where pi represents the aggregating proportion of client i in
global model. For vanilla FL approaches like FedAvg, the
aggregating proportion is determined by the volume of local
samples and pi = |Di|/|D|.

The aggregation algorithm that generates one global model
no longer works for personalized FL since each client requires
a personalized model. To arrive at a trade-off between global
parameter sharing and personalization, we first give a problem
definition of personalized FL as

θ = M · θ̂, where θ̂i = argmin
θi

Li(θi) (2)

where θ = [θ1, θ2, · · · , θN ]T and θ̂ = [θ̂1, θ̂2, · · · , θ̂N ]T. θi
is the aggregated personalized models that will be allocated
to client i; θ̂i is the local model which is trained separately
on data from client i; M is a parameter allocation matrix that
denotes how clients obtain their personalized models according
to training results from the others.

As shown in Equation 2, the goal of personalized FL is to
minimize the loss for all clients. Different from the classical
FL setting that allocates parameters through sample numbers,
personalized FL specifies each client a weight allocation
matrix M = [M1,M2, · · · ,MN ]T.

B. Differential NAS

In this paper, we utilize the representative differential NAS
method, DARTS [28], as the searching backbone. We take a
brief glance of details in how differential NAS can solve with
the challenge of model heterogeneity.

Differential NAS provides a super-network, which is com-
posed of all candidate sub-networks. The target of differential
NAS is to search the optimal sub-network out of the super-
network. After representing architecture parameters as α and
network weights parameters as ω, differential NAS performs
bi-level optimization method to train train network parameters
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Fig. 2: A workflow overview of FedKMA under the non-IID
scenario. In the beginning, FedKMA allocates the same (both
parameters and structures) initialized models to clients. In one
communication round, the clients update models and inference
logits ẑi to server. Then, the server calculates the knowledge
sharing matrix M according to logits, and performs weighted
average aggregation to obtain personalized aggregation results
for each client.

and search network architectures by gradient descent alter-
nately. The bi-level optimization problem is presented as

min
α
Lvalid(ω

∗(α), α) (3)

s.t. ω∗(α) = argmin
ω

Ltrain(ω, α) (4)

By gradient descent optimizing on α, clients are capable to
search sub-network architectures which are most suitable with
their local data distributions. Since differential NAS performs
searching and training on super-network, we can perform
coordinate-concerned aggregation with differential NAS even
if the clients hold different model architectures since we can
aggregate the weight of super-networks directly.

IV. PERSONALIZED FL ON MODEL STRUCTURES

In this section, we introduce FedKMA—a FL framework
that tackle with the challenges while training on personalized
models. Before we go into further details, we will first give
an overview of FedKMA. Then, we introduce how FedKMA
tackles the challenges while performing personalization on
model structures.

A. Overview of FedKMA

An overview of our proposed framework is shown in Figure
2. In FedKMA, clients are allowed to search the optimal model
structures on their local data by applying neural architecture
search (NAS) techniques; the server will obtain a knowledge
sharing matrix M (as mentioned in Section III) by using logits



(the inputs to the final softmax) from clients, and aggregate
personalized models for clients based on the knowledge shar-
ing matrix.

The server receives models (ω̂(t), α̂(t)) which are in dif-
ferent structures, and then calculates an irrelevancy matrix
H which indicates the difference among clients. Then, the
clients receive the irrelevancy matrix and calculate their own
knowledge sharing matrix Mi for the convenience of server to
generate personalized models (ω̂(t+1), α̂(t+1)) for them.

Using neural architecture search and knowledge sharing
algorithm we proposed, FedKMA are able to achieve con-
tinuous model personalization when a new communication
round starts. Thus, FedKMA can address the heterogeneous
challenges by personalized model structures.

B. Problem Formulation

Now, considering the personalization, we can rewrite the
personalized FL problem with model structure adaption as

{(ω∗
i , α

∗
i )}Ni=1 = argmin

ωi,αi

Li(ωi, αi)

ωi = Miω̂

αi = Miα̂

(5)

where Mi denotes the knowledge sharing matrix for model
parameters and model structure of client i respectively. We
use ω̂ and α̂ to notate the updated models (parameters and
structures, respectively) from clients.

ω̂ = [ω̂1, ω̂2, · · · , ω̂N ]T, where ω̂i = argmin
ωi

Li(ωi, αi)

α̂ = [α̂1, α̂2, · · · , α̂N ]T, where α̂i = argmin
αi

Li(ωi, αi)
(6)

Thus, FedKMA solves Equation 5 by server and clients
collaboratively.

C. Local Model Structure Adaption

We give a solution to the first two challenges of personalized
FL with heterogeneous model structures as we mentioned
before: (1) how to adjust model structures independently
and (2) how to achieve coordinate-wise aggregation given
personalized model structures. We propose to use differential
neural architecture search (NAS) to address the challenges.
NAS is able to obtain an optimal network structure that suits
the data distribution most by iterative search and evaluation
under certain searching space and data domain. Based on the
concept of NAS, differential NAS continuousizes the original
discrete network structure searching space and solves it by
gradient descent. Thus, differential NAS techniques can get
the network parameters (e.g., convolution kernel, etc.) while
searching the structures in an efficient way.

Differential NAS encodes the discrete network structure into
a continuous parameter which represents the confidence level
of the corresponding operator in the network. After finishing
the optimization of continuous network encoding, the network
structure can be re-discretized by selecting the operator with
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Fig. 3: An illustration of personalized aggregation utilizing
neural architecture search. The structure parameter is denoted
as a 3× 3 matrix where the rows represent edges in networks
while the columns represent different operations of the same
edge. For each edge, we select the operation with the largest
structure weight. We highlight the operations which are even-
tually chosen in the three model structures.

the maximum confidence level. We can formulate differential
NAS by

min
ω,α
L(ω, α) = 1

|D|

|D|∑
u=1

l(xu, yu;ω, α) (7)

where ω denotes the network parameter and α denotes the
network structure encoding. While applying differential NAS
into FL, the problem can be formulated naturally as

min
ωg,αg

L(ωg, αg) =

N∑
i=1

|Di|
|D|
Li(ωg, αg) (8)

where ωg and αg denote the global optimal network parame-
ters and network structure encoding.

Thus, the model heterogeneous FL challenge of adjusting
local model structures independently is addressed by differ-
ential NAS. Meanwhile, differential NAS is also competent
with the challenge of coordinate-concerned aggregation. Since
the model structure encoding αs among clients have identical
shape, the new model structure can be obtained by simply
aggregating local α together proportionally according to Equa-
tion 1.

D. Knowledge Sharing Algorithm

We propose a knowledge sharing algorithm to help the
central server allocate personalized models to clients. The
knowledge sharing algorithm enables efficient training results
exchange without sharing original local data samples or dis-
tributions. As discussed before, we suggest that the server can
customize the weight aggregation proportion p for each client.

We denote the knowledge sharing matrix at tth commu-
nication round as M (t) = [M

(t)
1 ,M

(t)
2 , · · · ,M (t)

N ]T where
M

(t)
i = [m

(t)
i1 ,m

(t)
i2 , · · · ,m

(t)
iN ] is the knowledge sharing

weight for client i. At the tth communication round, server
can aggregate the ith personalized model θi with all updated
local models θ̂ = [θ̂1, θ̂2, · · · , θ̂N ]T by

θ
(t)
i = M

(t)
i θ̂(t) = mi1θ̂

(t)
1 + · · ·+miN θ̂

(t)
N (9)



Thus, the challenge comes with how to obtain M (t) without
knowing clients’ information like local data distributions. In
most of the FL settings, clients update local trained model
parameters to the server. However, it is also feasible for clients
to submit more results without violating the data privacy
constraint so that the server is able to aggregate models with
additional hints. To obtain the learning status of each client’s
local model for different categories, we assume that FL is
dealing with a single classification problem with K categories.
We use ẑik to denote the averaged inference logits of the ith

client for the kth category of samples. ẑik can be represented
as

ẑik = Ex∼Pi(X,Y=k)[f(x; θ)] (10)

Pi(X,Y = k) indicates the local data distribution of client i.
Thus, we obtain ẑi = [ẑi1, ẑi2, · · · , ẑiK ]. In neural net-

works, the averaged inference logits ẑ contain the information
of how well the model learns samples of a certain category.
Instead of sharing sample granularity logits, sharing averaged
logits requires less computation and communication costs, and
does not need additional public datasets. With ẑi, we are able
to explore the relationships between client pairs.

When logits are the aggregated score for each category
derived from various information within the model, one can
infer whether this model learned how to classify a certain
category. Thus, we propose to adopt logits from local models
to measure the divergence of the clients’ current learning
status on different categories of samples. After obtaining
the divergence among clients, the server is able to obtain a
knowledge sharing matrix M (t). We propose to calculate a
knowledge sharing matrix Mi by evaluating the learning status
of each client. Mi can be calculated as

Mi = g(pi · h(ẑi)) (11)

h(ẑi) is generated by Hi while Hi denotes the distances
between client i and other clients in the system and we define
g(·) as g(x) = 1/e−x. To measure the distances, we calculate
the irrelevancy matrix Hi = [Hi1, · · · ,HiN ],Hi ∈ RN×N

as

Hijk = λDKL(ẑik||ẑjk) + (1− λ)DKL(ẑik||ek), (12)

where ek denotes the one-hot label for the kth category
and λ denotes a hyper-parameter that balances the clients’
similarities and inferring accuracy. We will discuss the value
of λ in the evaluation section. Unlike previous efforts that
used geometric distance like cosine distance to denote how
similar clients are, we give the distance measurement Hijk

that computes the relationship of client i and client j on the kth

category samples. Equation 12 is represented as a combination
of two items, as we measure the client relationships by
evaluating (1) how similar clients learn samples from different
categories, and (2) how well a client learns the samples from
a specific category.

Algorithm 1 Training process of FedKMA

Input: Number of communication rounds T , number of
clients N , number of sample categories K. Initialized
model (ω(0), α(0)).

Output: Personalized models {ω(T )
i , α

(T )
i }Ni=1.

1: Allocate initialized model (ω(0), α(0)) to clients
2: for communication round t = 1, 2, · · · , T do
3: Server executes:
4: for client i = 1, 2, · · · , N do ▷ in parallel
5: Receive (ω̂

(t)
i , α̂

(t)
i ), ẑ

(t)
i

6: end for
7: for client i = 1, 2, · · · , N do
8: for client j = 1, 2, · · · , N do
9: hij ← [λDKL(ẑik||ẑjk)+

(1− λ)DKL(ẑik||ek)]Kk=1

10: end for
11: Send Hi = [hi1, · · · , hiN ] to client i
12: end for
13: for client i = 1, 2, · · · , N do ▷ in parallel
14: Receive knowledge sharing matrix Mi from client

i
15: ω

(t)
i , α

(t)
i ←Miω̂,Miα̂

16: Send ω
(t)
i , α

(t)
i to client i

17: end for
18:
19: Clients execute: ▷ in parallel
20: ω̂

(t)
i , α̂

(t)
i ← argminω,α L(ω

(t−1)
i , α

(t−1)
i )

21: Send (ω̂
(t)
i , α̂

(t)
i ), ẑi to server

22: Receive irrelevancy matrix Hi from server
23: Mi ← 1/ exp(−pi ·Hi)
24: Send knowledge sharing matrix Mi to server
25: Receive personalized aggregated model (ω

(t)
i , α

(t)
i )

from server
26: end for

However, Hi only conveys whether client i shows a well
and similar learning status when focusing on different cate-
gories, it does not consider the local data distribution of client
i. That is to say, for a client which shows high performance
in classifying samples from a specific category, its parameters
will still be redundant to other clients who do not own samples
of this specific category. Thus, we propose that instead of
computing the knowledge sharing weight directly by Hi, the
clients should combine Hi with its local data distribution to
obtain the knowledge sharing matrix. Since we denote the
knowledge sharing matrix of client i as Mi and the local data
distribution as pi = Pi(Y |X = k), the knowledge sharing
matrix is computed as Equation 11.

V. EVALUATION RESULTS

In this section, we first demonstrate the efficiency of the
proposed FedKMA with experiments under several benchmark
image classification datasets. Then, we specifically present



why knowledge sharing matrix helps improve the personalized
aggregation in FedKMA.

A. Experimental Setup

a) Datasets: We consider three image classification
datasets including MNIST [7], CIFAR-10, and CIFAR-100
[19]. To generate non-IID in FL settings, we partition three
datasets under the guidance of NIID-Bench [22]. We partition
datasets by both quantity-skewed method and distribution-
skewed method. For quantity-skewed partition method, each
client is allocated with data samples of a fixed number of
labels. We use C = k to denote the case that each client only
has data samples of k different labels. Notice that the smaller
the k is, the more skewed the data distributions are. In this
paper, we choose k = 3, 5 in evaluations on MNIST/CIFAR-
10, and choose k = 30, 50 in evaluations on CIFAR-100.

For distribution-skewed partition method, each client is
allocated with a proportion of the samples of each label
according to Dirichlet distribution. We use β = b to denote the
case that each client is allocated with data samples according
to Dirichlet distribution with a concentration parameter β.
We perform both quantity-skewed partition and distribution-
skewed partition on the three image classification datasets
mentioned above. In this paper, we choose β = 0.5, 1 in
evaluations. Notice that the smaller the β is, the more skewed
the data distributions are.

b) Models and Implementation Details: We utilize Dif-
ferential NAS (DARTS) [28] in model architecture adjustment.
For fair comparison, we apply networks searched by DARTS
in other FL methods without architecture adjustment. We
implement all the methods by PyTorch on 4 NVIDIA Tesla
V100 GPUs. We set the number of clients at 10. By default, the
clients and servers communicate for 50 rounds. On the client
side, each client runs 5 epochs per communication round with
a batch size of 16. We use momentum SGD for model training
and searching with initial learning rate at 0.01, momentum at
0.9, and weight decay at 3 × 10−4. For the hyper-parameter
λ in Equation 12, we set λ = 0.5 in the experiments.

c) Evaluation Metrics: To evaluate the enhancement of
FedKMA in local inference performance, we quantify the per-
formance of methods by computing the inference accuracies
on local datasets with respect to each client. We first represent
the average local inference accuracy (short for ALIA), which
indicates the performance of the global system. We also adopt
the metric of best local inference accuracy for each client
(short for BLIA).

B. Comparison with Other Baselines

We first compare FedKMA with local only training manner
(no collaboration procedure is performed) and several global
FL methods including FedAvg, FedProx [24]. We further
compare FedKMA with personalized FL methods including
traditional personalized FL methods (FedPer [2], FeSEM [38])
and model heterogeneity personalized FL methods which
utilize knowledge distillation-based or pruning-based methods
respectively (FedMD [21] and SPIDER [31]).

TABLE I: ALIA (%) achieved by compared FL methods and
FedKMA on different datasets under partition-skewed non-IID
settings.

Dataset MNIST CIFAR-10 CIFAR-100
Partition C=3 C=5 C=3 C=5 C=30 C=50

Local Only 97.11 98.18 52.87 47.16 31.49 48.67
FedAvg 98.02 98.37 53.48 47.74 32.01 51.34
FedProx 97.29 98.79 65.78 44.9 38.72 54.03
FeSEM 97.31 98.18 74.02 82.56 30.69 53.22
FedPer 98.08 98.05 68.69 54.96 35.88 56.06
FedMD 97.95 98.48 70.31 59.33 38.01 57.20
SPIDER 98.76 98.92 87.08 89.51 48.10 58.25
FedKMA 98.46 99.09 93.40 91.22 49.52 58.87

TABLE II: ALIA (%) achieved by compared FL methods and
FedKMA on different datasets under distribution-skewed non-
IID settings.

Dataset MNIST CIFAR-10 CIFAR-100
Partition β=0.5 β=1 β=0.5 β=1 β=0.5 β=1

Local Only 95.83 96.11 57.43 58.07 31.58 34.15
FedAvg 95.48 96.22 53.79 47.5 21.01 22.64
FedProx 95.29 95.15 59.55 61.73 19.83 24.07
FeSEM 94.12 93.59 62.63 77.21 25.29 23.71
FedPer 95.87 95.23 60.65 60.49 24.18 27.33
FedMD 96.16 96.87 56.25 59.44 28.01 32.75
SPIDER 98.35 98.26 88.96 89.47 54.14 58.97
FedKMA 98.91 99.19 89.31 91.23 51.45 59.38

The ALIA of all methods being compared under different
non-IID settings are summarized in Table I and Table II.
The local only method is a standalone training manner that
none of the collaboration procedure is performed. Thus, local
only is a baseline to all of the FL methods. However, the
global FL methods like FedAvg are defeated by local only
under most of the non-IID scenarios. This is because that
improper collaboration among clients hinders the convergence
on local training, thus leading to poor performance on global
FL method. Conversely, the training convergence does not
receive negative affects in local only training. This result again
demonstrates the inefficiency of aggregating model parame-
ters only based on local sample numbers so that a proper
aggregation method is required. Compared with the global
FL methods, FedKMA shows outstanding performance while
facing different non-IID scenarios. The results indicate the
efficiency of personalization, where most of the personalized
FL methods achieve improvement in accuracy by up to 20%.

When it comes to personalized FL methods, FedKMA also
show outstanding performance. Since FedPer only performs
hard parameter sharing among clients, only high-level knowl-
edge is transferred among FL clients. Thus, FedPer shows
shortcomings in non-IID settings. Notice that FeSEM shows
better performance in quantity-skewed non-IID scenarios than
distribution-skewed scenarios. This is because that FeSEM
and other personalized FL methods that group clients into
several clusters based on a strong assumption that the local
data distributions among clients can be partitioned and local
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(a) C = 3 scenario.
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Fig. 4: The visualization of BLIA of each client for FedKMA
and other baseline methods on CIFAR-10 with two non-IID
settings.

TABLE III: Results on ablation study of FedKMA. The
baseline infers the vanilla FL training manner, while Manner
2 and 3 are FL training manners without model structure
adaption/knowledge sharing algorithm.

C=3 β = 0.5
Baseline 53.48 47.74 53.79 47.5

Manner 2 58.06 50.93 55.12 49.61
Manner 3 87.08 89.51 88.96 89.47

FedKMA 93.4
(+39.92)

91.22
(+43.48)

89.31
(+35.52)

50.93
(+42.65)

distributions remain IID inside the subsets. Also, clustering
clients according to gradients/parameters similarity not al-
ways works [34], [37]. Thus, FeSEM fails when it comes to
distribution-skewed scenarios that no significant clustered data
distributions exist. When it comes to model heterogeneous
personalized FL methods including FedMD and SPIDER,
FedKMA outperforms up to 32.8% on ALIA.

Specifically, we take a discussion on the communication
overhead between FedKMA and FedMD. As these two meth-
ods both require clients to send local inference logits to
the server, FedKMA saves the communication costs since
FedKMA only requires the averaged inference logits on each
category, while FedMD needs the inference logits of each
data sample in public datasets. The communication cost of
FedKMA is K × K while FedMD is K × |D| (K and |D|
indicates the number of data categories and samples of public
datasets respectively, notice that |D| ≫ K).

We also examine the BLIA for each client in all methods. To
test the best inference performance of each method in details,
we visualize the BLIA performance for clients in Figure 4.
Compared with other global and personalized FL methods,
FedKMA owns clients with higher averaged BLIA and lower
variance on CIFAR-10 under different non-IID scenarios.

C. Ablation Study

We perform an ablation study to verify the efficiency of
the two main components of FedKMA—model architecture
adaption and knowledge sharing algorithm. We obtain the
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Fig. 5: The convergence curve of FedKMA and Manner 3
under different non-IID settings. The blue and green shades
indicate the convergence communication rounds of FedKMA
and Manner 3 respectively.

following FL manners: (1) without neither model structure
adaption nor the knowledge sharing algorithm (Baseline), (2)
without model structure adaption (Manner 2), (3) without the
knowledge sharing algorithm (Manner 3), and (4) the full
design of FedKMA. Table III shows the results of applying the
above four training manners under different non-IID partitions.
Compared with FL manners that without model heteroge-
neous settings, the design of letting clients adapt local model
structures highly improves the performance. Moreover, the
addition of the knowledge sharing algorithm is also effective in
improving performance. Manner 2 improves ALIA up to 8%
over the baseline method and FedKMA improves the ALIA
by 5% over Manner 3.

Furthermore, we also compare the difference in convergence
time to measure whether the knowledge sharing algorithm is
able to reduce the local fine-tuning time, thus achieving a
higher convergence rate. In Figure 5 we visualize the ALIA
curve under different non-IID settings. The blue shades in
Figure 5 denote the round of FedKMA convergence while the
green shades denote that Manner 3 converges. Since the blue
shades always covered the green shades, we can observe that
compared with Manner 3, our proposed FedKMA converges
earlier.

D. How FedKMA Achieves Personalization?

We give further details about how the two solutions above
help FedKMA achieve personalization and provide perfor-
mance improvement contribution.

a) Efforts of Generating Different Structures: We ob-
serve the local model structures with local data distribution
respectively when training on CIFAR-10. For different data
distribution, FedKMA generates heterogeneous model struc-
tures. We show that FedKMA performs the capability of local
model adaption with local data distributions. We observe a
few of the local model structures with local data distribution
respectively when training on CIFAR-10. As we shown in
Figure 6 For different data distributions, FedKMA generates
heterogeneous model structures: for more complex distribu-
tions (i.e., data with more categories), the personalized model
structure tends to be deeper with more complex operations
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Fig. 6: The personalized model structures generated by proposed FedKMA.
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Fig. 7: The visualization of the knowledge sharing matrix M
under two non-IID settings on CIFAR-10. The x-axis and y-
axis show the client IDs respectively.

like convolution; for simpler distributions (i.e., data with less
categories), the model structure tends to be more shallow with
simper operations like pooling.

b) The Efficiency of Knowledge Sharing Matrix: Al-
though FedKMA utilizes neural architecture search in local
training, the model heterogeneity is also based on the person-
alized aggregation. We evaluate the efficiency of knowledge
sharing matrix when FedKMA meets different non-IID scenar-
ios. We visualize the knowledge sharing matrix under C = 3
and β = 0.5 non-IID scenario with 10 clients.

From Figure 7a we can discover that in C = 3 scenario, the
knowledge sharing matrix captures the relationships among
client pairs accurately. Since we partition clients into three
groups with similar data distribution (within the same group,
clients share samples from the same categories), we could
see three blocks in the matrix just as how we divide the
clients. Additionally, for β = 0.5 scenario in Figure 7b, unlike
other personalized FL approaches which allocated the largest
weight for clients themselves, FedKMA also captures inherent
similarity among distributions.

c) Selection of Hyper-parameter λ: In Equation 12, we
set a scaling hyper-parameter λ that balances the clients
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Fig. 8: The ALIA obtained from different λ values under C =
3 and β = 0.5 distribution scenarios.

similarities and inferring accuracy. We evaluate the influence
of λ by tuning it in the set {0, 0.01, 0.25, 0.33, 0.5, 1} on
CIFAR-10 with C = 3 and β = 0.5 scenarios since these two
settings exhibit more significant heterogeneity. We illustrate
the ALIA in Figure 8. It can be observed that a larger λ
(λ = 0.5, 1) gives better results in both of the heterogeneous
scenarios. From these results, we can infer that the similarity
of learning status among clients is important information for
knowledge sharing algorithm.

VI. CONCLUSION

In this paper, we proposed FedKMA, a novel personalized
FL framework with knowledge sharing-based model structure
adaption. FedKMA allows clients to train and infer on per-
sonalized models with heterogeneous structures. We showed
that FedKMA achieves enhancement on local inference per-
formance for every client in the system since the knowledge
sharing matrix captures the relationships between client pairs
so that an efficient aggregation is well performed. Compared
with other personalized FL approaches, experiment results
on several benchmark datasets demonstrate that FedKMA
not only outperforms the existing state-of-the-art in accuracy
significantly but also achieves a higher convergence rate.
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