2312.10726v1 [cs.CV] 17 Dec 2023

arxXiv

Towards Compact 3D Representations via Point Feature Enhancement Masked
Autoencoders

Huizhen Ji'
Bin Chen*

Yaohua Zha'?

Jinmin Li'
Zhi Wang!

Rongsheng Li'  Tao Dai’*

Shu-Tao Xia!?

Tsinghua Shenzhen International Graduate School, Tsinghua University'
Research Center of Artificial Intelligence, Peng Cheng Laboratory?
College of Computer Science and Software Engineering, Shenzhen University?
Harbin Institute of Technology, Shenzhen*
chayh2l@mails.tsinghua.edu.cn

Abstract

Learning 3D representation plays a critical role in masked au-
toencoder (MAE) based pre-training methods for point cloud,
including single-modal and cross-modal based MAE. Specif-
ically, although cross-modal MAE methods learn strong 3D
representations via the auxiliary of other modal knowledge,
they often suffer from heavy computational burdens and
heavily rely on massive cross-modal data pairs that are of-
ten unavailable, which hinders their applications in practice.
Instead, single-modal methods with solely point clouds as
input are preferred in real applications due to their simplic-
ity and efficiency. However, such methods easily suffer from
limited 3D representations with global random mask input.
To learn compact 3D representations, we propose a simple
yet effective Point Feature Enhancement Masked Autoen-
coders (Point-FEMAE), which mainly consists of a global
branch and a local branch to capture latent semantic fea-
tures. Specifically, to learn more compact features, a share-
parameter Transformer encoder is introduced to extract point
features from the global and local unmasked patches ob-
tained by global random and local block mask strategies,
followed by a specific decoder to reconstruct. Meanwhile,
to further enhance features in the local branch, we pro-
pose a Local Enhancement Module with local patch convo-
lution to perceive fine-grained local context at larger scales.
Our method significantly improves the pre-training efficiency
compared to cross-modal alternatives, and extensive down-
stream experiments underscore the state-of-the-art effective-
ness, particularly outperforming our baseline (Point-MAE)
by 5.16%, 5.00%, and 5.04% in three variants of ScanOb-
jectNN, respectively. Code is available at https://github.com/
zyh16143998882/A AAI24-PointFEMAE.

Introduction

Point cloud, as an efficient representation of 3D objects, has
been widely used in extensive applications like autonomous
driving, robotics, and the metaverse for its rich geometric,
shape, and structural details. Recently, with the rapid ad-
vancements of deep learning-based point cloud understand-
ing (Qi et al. 2017a; Wang et al. 2019; Xiong et al. 2023; Gao
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et al. 2023), masked autoencoder (MAE) based pre-training
methods (Pang et al. 2022; Zhang et al. 2022b; Dong et al.
2022; Zhang et al. 2022c¢; Qi et al. 2023), which aim to learn
latent 3D representations from vast unlabeled point clouds,
have received much attention, and can be categorized into
two classes, i.e., single-modal (Pang et al. 2022; Zhang et al.
2022b) and cross-modal (Dong et al. 2022; Guo, Li, and
Heng 2023; Zhang et al. 2022c; Qi et al. 2023) methods.

Among them, cross-modal MAE methods, leveraging in-
sights from other modalities, have achieved remarkable per-
formance by acquiring holistic 3D representations. How-
ever, these methods rely heavily on transferring knowledge
from massive pair images or texts, which are often unavail-
able in practice. Specifically, they utilize pre-trained im-
age or language models to extract cross-modal knowledge,
along with techniques like projection or knowledge distilla-
tion for cross-modal knowledge transfer. Such complex op-
erations require heavy computational cost and thus hinders
their applications in practice. As shown in Table 1, cross-
modal methods like Recon (Qi et al. 2023) have obtained
performance gains by 5% on ScanObjectNN while requiring
5X pre-training parameters, compared to the single-modal
Point-MAE (Pang et al. 2022).

For these reasons, single-modal methods with solely point
clouds as input are preferred in real applications due to
their simplicity and efficiency (Table 1). However, exist-
ing single-modal methods rely heavily on the global random
masked point cloud (shown in Figure 1 (a)) generated by the
global random masking strategy to learn 3D representations,
which makes the model have robust global shape perception
but insufficient local detail representation. As shown in Ta-
ble 2, such single-modal methods can work well on global
masked point cloud (GMPC), while failing in local masked
point cloud (LMPC), thus resulting in limited 3D represen-
tations for single-modal MAE models.

To learn compact 3D representations for point cloud, we
propose a simple yet highly effective Point Feature En-
hancement Masked Autoencoders (Point-FEMAE), which
mainly consists of a global branch and a local branch to
capture latent global and local features, respectively. Specif-
ically, during the pre-training stage, as illustrated in Figure
2 (a), we subject a complete point cloud to both global ran-



Pretrain Efficiency Efficacy

Method Reference Input Cross-Modal Transfer Masking Strategies #Params (M) GFLOPS Times (h) ScanObjectNN  ModelNet40
Single-Modal MAE-based Method

Point-MAE ECCV 2022 PC Global Random 29.0 (baseline) 2.3 (baseline) 13 (baseline) 85.18 (baseline) 93.8 (baseline)

Point-M2AE NeurIPS 2022 PC Multi-Scale Global Random  15.3 (0.5 x) 3.7 (1.6 x) 29 (2.2 x) 86.43 (1 1.25) 94.0 (1 0.2)
Cross-Modal MAE-based Method

ACT ICLR 2023 PC Knowledge Distillation Global Random 135.5 (4.7 x) 31.0(13.5 x) 52(4.0 x) 88.21 (1 3.03) 93.7 (1 0.1)

Joint-MAE 1ICAI 2023 PC&I Projection & 2D Recon. Global Random - - - 86.07 (1 0.89) 94.0 (10.2)

2P CVPR 2023 PC &1 Projection & 2D Recon. 2D-Guided 74.9 (2.6 x) 168 (7.3 x) 64 (49 %) 90.11 (1 4.93) 94.1 (1 0.3)

Recon ICML 2023 PC&I&L  Contrastive Learning Global Random 1409 (4.9 x)  209(9.1 x)  34(2.6 x) 90.63 (1 5.45) 94.5 (1 0.7)

Point-FEMAE  Ours PC Hybrid Global & Local 41.5 (1.4 x) 5022 x) 21 (1.6 x) 90.22 (1 5.04) 94.5 (1 0.7)

Table 1: Comparison of existing single-modal and cross-modal MAE methods in terms of pre-training efficiency and represen-
tational capability. For pre-training efficiency, we evaluate parameters, GFLOPS, and actual pre-training time. For representa-
tional capability, we fine-tuned the pre-trained models to evaluate classification accuracy on the ScanObjectNN (Uy et al. 2019)
and ModelNet40 (Wu et al. 2015). In the table, PC represents point cloud, I represents images, L represents language, and 2D
Recon. refers to 2D image pixels or semantic reconstruction.

dom masking and local block masking to generate globally-
biased and locally-biased inputs, respectively. Subsequently,
a partially parameter-shared encoder is employed to cap-
ture latent global and local features in the global and lo-
cal branches and rebuild the masked inputs with a branch-
independent decoder. Our encoder in both branches shares
the same Transformer parameters to ensure comprehensive
comprehension of the global points. Furthermore, an addi-
tional Local Enhancement Module (LEM) with local patch
convolution is introduced within the local branch to perceive
fine-grained local context at larger scales. During the fine-
tuning phase, as depicted in Figure 2(b), owing to the avail-
ability of comprehensive global and local information in the
complete input point cloud, we employ the encoder from
the local branch to learn compact 3D representations of the
downstream task point clouds.
Our main contributions are summarized as follows:

* We have found that existing single-modal MAE-based
point cloud pre-training methods suffer from limited 3D
representations, due to the use of a global random mask-
ing strategy, which causes biases to the global feature
perception while failing to work well on local detail.

* We propose a Point Feature Enhancement Masked Au-
toencoders (Point-FEMAE), which combines global and
local mask reconstruction to capture latent enhanced
point features. Besides, a Local Enhancement Module
(LEM) is introduced into the encoder to perceive fine-
grained local context at larger scales.

* Our method significantly improves the pre-training effi-
ciency compared to cross-modal methods. Notably, ex-
tensive experiments demonstrate the effectiveness of our
method over other MAE-based methods. Particularly, our
method significantly outperforms Point-MAE by 5.16%,
5.00, and 5.04% in three variants of ScanObjectNN, re-
spectively.

Related Work

Point Cloud Self-supervised Learning

Self-supervised Learning (SSL) has achieved remarkable
success in many fields such as NLP and computer vision.

This approach first applies a pretext task to learn the latent
semantic information and then fine-tunes the weights of the
model in the target task to achieve higher performance. Ex-
isting pretext tasks can be divided into discriminative tasks
(Becker and Hinton 1992; Wu et al. 2018; Chen et al. 2020,
Zhang et al. 2023) and generative tasks (He et al. 2022;
Lin, Wang, and Liu 2021; Baevski et al. 2022). The dis-
criminative approach (Xie et al. 2020) distinguishes differ-
ent views of the same instance from other instances, and in
the point cloud field, PointContrast (Xie et al. 2020) first
explores learning 3D representations using contrast learning
of features of the same points in different views. CrossPoint
(Afham et al. 2022) learns point cloud representations within
the 3D domain by contrast learning, and then performs fur-
ther cross-mode contrast learning. Generation methods (Vin-
cent et al. 2008; Radford et al. 2018; Devlin et al. 2018;
Ferles, Papanikolaou, and Naidoo 2018; Zhang et al. 2022a)
typically rely on an autoencoder to learn the latent features
of the data by reconstructing the original input. Masked au-
toencoders (MAE) (He et al. 2022), a classical autoencoder
that tries to recover the original input from a masked ver-
sion, which allows the model to learn more robust features,
has received a lot of research attention.

MAE-based Point Cloud Pre-training

MAE-based point cloud pre-training methods can be
grouped into two categories, i.e., single-modal (Pang et al.
2022; Zhang et al. 2022b) and cross-modal (Dong et al.
2022; Guo, Li, and Heng 2023; Zhang et al. 2022c; Qi et al.
2023) methods. Point-MAE (Pang et al. 2022) pioneered the
use of masked autoencoders for self-supervised pre-training
in point clouds. It divides point clouds into patches and
employs mini-Point-Net to extract patch embeddings. Then
a mask reconstruction was performed with standard trans-
formers and the results were impressive. Afterward, Point-
M2AE (Zhang et al. 2022b) proposes a multi-scale masking
strategy, but still relies on a global random masking strategy
at the first scale. Subsequent work mainly focused on using
cross-modal knowledge to aid point cloud model learning.
For instance, ACT (Dong et al. 2022) utilized a pre-trained
ViT (Dosovitskiy et al. 2020) as a teacher network to guide
the learning of the point cloud student network. I2P-MAE
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Figure 1: Differences in data distribution between pre-
training and fine-tuning. (a) Global Masked Point Cloud
(GMPC) input during pre-training with global random
masking. (b) Local Masked Point Cloud (LMPC) input dur-
ing pre-training with local block masking. (c) Complete
Point Cloud (CPC) input during downstream fine-tuning.

(Zhang et al. 2022c) proposed 2D-guided masking and 2D
semantic reconstruction to assist point cloud model learn-
ing. Recon (Qi et al. 2023) learn from both generative mod-
eling teachers and cross-modal contrastive teachers through
ensemble distillation. Other MAE-based works (Chen et al.
2023; Yang et al. 2023; Tian et al. 2023) focus on using
scene and LiDAR point clouds for pre-training, specifically
for detection tasks. IDPT (Zha et al. 2023b) first proposed
to introduce prompt tuning in pre-trained point cloud mod-
els. Our work focuses on single-modality point cloud pre-
training to learn compact 3D representations.

Methodology
Observations

Despite the high efficiency, existing single-modal MAE-
based pre-training pipelines with global/local random mask
strategies obtain much worse performance than cross-modal
methods (as shown in Table 1). It still remains unknown
how the random mask strategies affect the single-modal
MAE models. To this end, we first identified a substan-
tial gap in the data distribution between the input data dur-
ing pre-training and fine-tuning in the context of existing
MAE-based methods. During the pre-training stage, conven-
tional masked autoencoders typically employ a global ran-
dom masking strategy to learn 3D representations, as shown
in Figure 1(a), where a portion of the points is randomly
masked. This masking strategy retains the global shape of
the point cloud while sacrificing local details. Another strat-
egy of local block masking randomly masks entire point
blocks from the complete point cloud at the same ratio, pre-
serving some local details but disrupting global shapes, as
shown in Figure 1 (b), which has been demonstrated to yield
limited performance (Yu et al. 2022; Pang et al. 2022). How-
ever, during the fine-tuning stage, complete point clouds
containing full information are often utilized to learn 3D rep-
resentations, as depicted in Figure 1 (c).

Our empirical observations suggest that such masked in-
put during the pre-training stage may learn limited 3D rep-
resentation due to the lack of complete information. Specif-
ically, we employ two straightforward masking strategies:
global random mask and local block mask, illustrated in Fig-

ure 1 (a) and (b), to dissect the representation efficacy of
Point-MAE models pre-trained with these inputs. We assess
the models’ performance across reconstruction and classifi-
cation tasks on pertinent test datasets. By introducing point
cloud inputs biased toward local details (LMPC) and biased
toward global shapes (GMPC) into the model, we gauge its
competence in capturing both global and local point repre-
sentations.

Reconstruction Chamfer Distance ()  Classification Accuracy (1)

Pre-training Model

GMPC Input LMPC Input GMPC Input LMPC Input
Point-MAE w/ Global Random Mask 2.1902 2.8538 92.77 88.98
Point-MAE w/ Local Block Mask 2.3533 2.4064 92.08 88.81
Point-FEMAE (Ours) 2.1880 2.3941 93.46 89.33

Table 2: Models with varying mask strategies are assessed
using locally-biased LMPC and globally-biased GMPC for
classification and reconstruction evaluations. We measure
the reconstructed chamfer distance on the ShapeNet test
set, lower is better. Additionally, we gauge the classification
accuracy during fine-tuning on ScanObjectNN (OBJ-BG),
higher is better.

The rationale behind this is as follows: for a model utiliz-
ing a global random masking strategy, the GMPC inputs are
sparsely and randomly spread across the entire object, caus-
ing local details to be severely disrupted. Despite this, the
overall global shape remains preserved, leading the model to
prioritize extracting global features. Conversely, in the case
of LMPC inputs, all points are clustered within a few local
regions, prompting the model to emphasize learning repre-
sentations centered on the local surface. Consequently, mod-
els exhibiting proficiency in GMPC highlight strong global
representation, while those excelling in LMPC underscore
potent local representation capabilities.

As illustrated in Table 2, the Point-MAE w/ global ran-
dom masking, demonstrates impressive reconstruction and
classification results when tested on GMPC, but its perfor-
mance is subpar on LMPC. This observation suggests that
the model excels in global representation capabilities. Con-
versely, the Point-MAE w/ local block masking also displays
superior performance on GMPC as opposed to LMPC. How-
ever, in comparison to global random masking, local block
masking encounters a more substantial decline in GMPC
performance and a greater enhancement in LMPC perfor-
mance.

The above observations indicate that existing single
modal pre-trained models employing these two straightfor-
ward masking strategies lack the ability to excel simultane-
ously in both LMPC and GMPC, i.e., these models fail to ef-
fectively capture both local and global representations. Pre-
vious research (Qi et al. 2017b; Wang et al. 2019; Li et al.
2021; Wu, Qi, and Fuxin 2019) has demonstrated that mod-
els capable of robustly representing both global and local
features exhibit higher potential. This insight motivates us
to develop a model that learns compact 3D representations
by comprehensively exploring global and local information.

Point Feature Enhancement Mask Autoencoders

The overall pipeline of our point feature enhancement
masked autoencoders (Point-FEMAE) is shown in Figure 2.
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Figure 2: The pipeline of our Point-FEMAE. During the pre-training stage, we perform mask reconstruction in both the global
and local branches to learn compact 3D representations. During the fine-tuning stage, we only employ the encoder of the local

branch to learn the 3D representation of downstream data.
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Figure 3: The Encoder Layer’s structure, where each layer
incorporates a globally oriented Transformer Block and a
locally oriented LEM. Within the LEM, information from
k nearest neighbor patches is fused based on the patches’
coordinates, facilitating a broader scope of local perception.

During the pre-training stage, due to the issue of informa-
tion loss in masked inputs, we performed mask reconstruc-
tion in both the global and local branches to learn compact
3D representations. During the fine-tuning stage, owing to
the complete input, we only employ the encoder of the local
branch to learn the 3D representation of downstream data.

Masking and Embedding. Given a point cloud PC &€
RN*3 with N points, we initially divide it into p point
patches P € RPX™X3 by farthest point sampling (FPS)
and K-Nearest Neighborhood (KNN), with each point patch
comprising m local points. Subsequently, in the global

branch, we apply global random patch masking to yield un-
masked patches P9 € R(—"PX™X3 4nq masked patches
P, c R™X™X3 \here r denotes the mask ratio. Anal-
ogously, within the local branch, we utilize random lo-
cal block masking to generate P, € R(I~mPXmX3 gpq
P. € R"™*™X3 Finally, PZ and P! are embedded
via a light PointNet, and positional encodings are incor-
porated to derive block tokens E§ € RM"PXC apd

El € ROA—MPXC for the global and local branches, re-
spectively.

Encoder. We employ a share-parameter Transformer en-
code to extract features from the unmasked patches in both
the global and local branches. This encoder consists of
a series of n encoder layers, each incorporating a stan-
dard Transformer block and a Local Enhancement Module
(LEM), as depicted in Figure 3. The Transformer layer in-
tegrates multi-head Self-Attention and a feed-forward net-
work, predominantly focused on perceiving global informa-
tion. The local enhancement module (LEM), situated after
the Transformer Block, is mainly designed to capture local
information about the object, during the fine-tuning phase
and the local branch of pre-training.

Specifically, for the global branch, during the z-th layer
forward phase, the feature E¢ only passes through the z-th
standard Transformer block 7;, allowing the standard Trans-
former to focus more on the global feature representations.
For the local branch, the feature E!, passes through the i-



th standard Transformer block and is then fed into the -
th Local Enhancement Module M, enabling the Local En-
hancement Module to focus more on representing local fea-
tures. Finally, after n layers of forward propagation, the two
branches yield the features EJ and E.,, respectively. The
forward process of each layer is defined as

B BY), = [TH(BL_); TiM(BL,))),, (D

where 4 takes values from 1 to m, and [; ], denotes concate-
nation along the batch dimension.

Local Enhancement Module. Existing MAE-based
methods have exhibited limited local representation, pri-
marily relying on PointNet (Qi et al. 2017a) for extracting
patch embeddings to represent limited local contexts. This
approach is hindered by two key issues: 1) PointNet inher-
ently lacks localization capabilities, and 2) it struggles to
effectively capture localization at broader scales. To tackle
these issues, drawing inspiration from Edge-Conv (Wang
et al. 2019), we introduce a local patch convolution with
coordinate-based nearest neighbors at the patch scale as a
dedicated local enhancement module (LEM), to perceive
fine-grained local context at larger scales.

Specifically, for each patch token E!_,, it first undergoes
a Transformer Block to yield the current patch tokens E..
The patch coordinates C' of this patch undergo K -Nearest
Neighbor (KNN) to obtain the indices I of the K near-
est neighboring patches. Through these indices, the relative
edges between patches are calculated (e.g., for patches a and
b as neighbors, the edge is computed as E!(a) - E!(b)). Each
patch in E! is then replicated K times, and concatenated
with the corresponding edges to form the final edge tensor
G,. We apply a single-layer MLP for dimension reduction
and use Max pooling to aggregate the K local edges. Lastly,
the result goes through another MLP to yield the output to-
kens E! for the i-th layer.

Decoder. We employ two distinct decoders, DY and Dl
both structured identically. In the local branch, we first con-
catenate the encoder output E!, with randomly initialized
learnable mask tokens E!, and direct this composite in-
put into D'. Subsequently, we pass the output E!,, through
a Linear Head H' for coordinate reconstruction, yielding
Rﬁn. Finally, we calculate the reconstruction loss between
Rl € R"*™X3 and the ground truth P}, . Similar pro-
cesses are undertaken for the global branch. Specifically, the
forward process of each layer is defined as

R, = H(D'([E}; Byl rp o) @

RY, = H/(D([ES; ER,]) [ rp ) ©)
where [; ], denotes concatenation along the token dimension
and [:, 7p :] denotes the last rp patch tokens.

Loss Function. Following previous works (Pang et al.
2022), we use the lo Chamfer Distance (Fan, Su, and Guibas
2017) (CD) as our reconstruction loss. Our reconstruction
target is to recover the coordinates of the local and global
branch masked point patches. Our loss function L is as fol-
lows

L =CD(RS,,PS)+CD(R.,, PL) 4

Experiments
Pre-training on ShapeNet

We use ShapeNet (Chang et al. 2015) as our pre-training
dataset, encompassing over 50,000 distinct 3D models span-
ning 55 prevalent object categories. We extract 1024 points
from each 3D model to serve as input for pre-training. The
input point cloud is further divided into 64 point patches,
with each patch containing 32 points. Table 1 presents a
comparison of our method and other approaches concerning
pre-training efficiency and efficacy.

Single-Modal. Compared to the single-modal baseline,
Point-MAE (Pang et al. 2022), our method shows only slight
increases in parameters, GFLOPS, and pre-training time,
which are negligible considering the significant performance
improvements. In contrast to Point-M2AE (Zhang et al.
2022b), while we possess more parameters and GFLOPS,
our pre-training time is notably shorter. This variance arises
from Point-M2AE’s utilization of a larger input point count
and patches (2048 points and 512 patches) in contrast to our
utilization of 1024 points and 64 patches.

Cross-Modal. In comparison to cross-modal methods, our
approach showcases a substantial reduction in parameters
(30%~60%), GFLOPS (16%~30%), and pre-training times
(30%~60%) due to our simple pipeline and input. Remark-
ably, while maintaining pre-training efficiency, our method
achieves comparable performance to the state-of-the-art
cross-modal method, Recon (Qi et al. 2023), underscoring
the excellence of our approach.

Fine-tuning on Downstream Tasks

We assess the efficacy of our approach by fine-tuning our
pre-trained models on downstream tasks, including classifi-
cation, few-shot learning, and part segmentation.

Object Classification. We initially assess the overall clas-
sification accuracy of our pre-trained models on both real-
scanned (ScanObjectNN (Uy et al. 2019)) and synthetic
(ModelNet40 (Wu et al. 2015)) datasets. ScanObjectNN
is a prevalent dataset consisting of approximately 15,000
real-world scanned point cloud samples from 15 categories.
These objects represent indoor scenes and are often charac-
terized by cluttered backgrounds and occlusions caused by
other objects. ModelNet40 is a well-known synthetic point
cloud dataset, comprising 12,311 meticulously crafted 3D
CAD models distributed across 40 categories.

To ensure a fair comparison, we follow the practices of
previous studies (Dong et al. 2022; Qi et al. 2023; Zhang
et al. 2022c). For the ScanObjectNN dataset, we employ
data augmentation through simple rotations and report re-
sults without voting mechanisms. Additionally, for each in-
put point cloud, we sample 2048 points. Regarding the Mod-
elNet4( dataset, we sample 1024 points for each input point
cloud and report overall accuracy for both the without-
vote and with-vote configurations and during the fine-tuning
phase in ModelNet40, we only update the parameters of our
local enhancement modules and the classification head to
mitigate overfitting.



ScanObjectNN ModelNet40
Method Reference  #Params M) 100 Data OBI-BG  OBJ-ONLY PB-T50-RS Input Data w/o Vote w/ Vote
Supervised Learning Only
PointNet (Qi et al. 2017a) CVPR 2017 35 1k Points 73.3 79.2 68.0 1k Points 89.2 -
PointNet++ (Qi et al. 2017b) NeurIPS 2017 1.5 1k Points 82.3 84.3 77.9 1k Points 90.7 -
DGCNN (Wang et al. 2019) TOG 2019 1.8 1k Points 82.8 86.2 78.1 1k Points 92.9 -
SimpleView (Goyal et al. 2021) ICML 2021 - 6 Images - - 80.5 6 Images 93.9 -
MVTN (Hamdi, Giancola, and Ghanem 2021)  ICCV 2021 11.2 20 Images - - 82.8 12 Images 93.8 -
PointMLP (Ma et al. 2022) ICLR 2022 12.6 1k Points - - 85.2 1k Points 94.1 94.5
SFR (Zha et al. 2023a) ICASSP 2023 - 20 Images - - 87.8 12 Images 93.9 -
P2P-HorNet (Wang et al. 2022) NeurIPS 2022 195.8 40 Images - - 89.3 40 Images 94.0 -
Single-Modal Self-Supervised Learning
Point-BERT (Yu et al. 2022) CVPR 2022 22.1 1k Points 87.43 88.12 83.07 1k Points 92.7 93.2
MaskPoint (Liu, Cai, and Lee 2022) ECCV 2022 22.1 2k Points 89.30 88.10 84.30 1k Points - 93.8
Point-MAE (Pang et al. 2022) ECCV 2022 22.1 2k Points 90.02 88.29 85.18 1k Points 93.2 93.8
Point-M2AE (Zhang et al. 2022b) NeurIPS 2022 15.3 2k Points 91.22 88.81 86.43 1k Points 93.4 94.0
Point-FEMAE - 274 2k Points 95.18 93.29 90.22 1k Points 94.0 94.5
Improvement (baseline: Point-MAE) - - - +5.16 +5.00 +5.04 - +0.8 +0.7
Cross-Modal Self-Supervised Learning

ACT (Dong et al. 2022) ICLR 2023 22.1 2k Points 93.29 91.91 88.21 1k Points 93.2 93.7
Joint-MAE (Guo, Li, and Heng 2023) 1JCAI 2023 - 2k Points 90.94 88.86 86.07 1k Points - 94.0
12P-MAE (Zhang et al. 2022c) CVPR 2023 15.3 2k Points 94.15 91.57 90.11 1k Points 93.7 94.1
Recon (Qi et al. 2023) ICML 2023 443 2k Points 95.18 93.29 90.63 1k Points 9.1 94.5

Table 3: Classification accuracy on real-scanned (ScanObjectNN) and synthetic (ModelNet40) point clouds. In ScanObjectNN,
we report the overall accuracy (%) on three variants. In ModelNet40, we report the overall accuracy (%) for both without and

with voting. "#Params” represents the model’s parameters.

As presented in Table 3, in comparison to baseline Point-
MAE, our method showcases substantial enhancements in
accuracy across various datasets. Specifically, we observe
improvements of 5.16%, 5.00%, and 5.04% on three variants
of ScanObjectNN, as well as gains of 0.8% and 0.7% on the
ModelNet40 (w/o vote and w/ vote respectively). Further-
more, when compared to the leading cross-modal method
Recon (Qi et al. 2023), our approach achieves almost equiv-
alent accuracy, while requiring only 62% of the parameters.
These results underscore the unmatched efficiency and effi-
cacy of our pre-trained models, affirming the superiority of
our design.

5-way 10-way
Method 10-shot  20-shot  10-shot  20-shot
Supervised Learning Only
PointNet (Qi et al. 2017a) 52.0+43.8 57.8449 46.6+4.3 35.2+4.8
PointNet-OcCo (Wang et al. 2021) 89.7+x1.9 92.4+1.6 83.9+1.8 89.7+1.5
PointNet-CrossPoint (Afham et al. 2022)  90.9+4.8 93.5+4.4 84.6+4.7 90.2+2.2

DGCNN (Wang et al. 2019) 31.6+2.8 40.844.6 19.9+2.1 16.9+1.5
DGCNN-CrossPoint (Afham et al. 2022)  92.5+3.0 94.9+2.1 83.6+5.3 87.9+4.2
Single-Modal Self-Supervised Learning
Transformer-OcCo (Wang et al. 2021) 94.0+£3.6 959423 89.4+5.1 92.4+4.6
Point-BERT (Yu et al. 2022) 94.6+3.1 96.3+2.7 91.0+£54 92.7+5.1
MaskPoint (Liu, Cai, and Lee 2022) 95.0+£3.7 97.2+1.7 91.4+4.0 93.4+35
Point-MAE (Pang et al. 2022) 96.3£2.5 97.8+1.8 92.6+4.1 95.0+3.0
Point-M2AE (Zhang et al. 2022b) 96.8+1.8 98.3+1.4 92.3+4.5 95.0+3.0
Point-FEMAE 97.2+1.9 98.6+1.3 94.0+3.3 95.8+2.8

Improvement (baseline: Point-MAE) +0.9 +0.8 +1.4 +0.8
Cross-Modal Self-Supervised Learning

ACT (Dong et al. 2022) 96.8+42.3 98.0+1.4 93.3+4.0 95.6+2.8

Joint-MAE (Guo, Li, and Heng 2023) 96.742.2 97.9+1.8 92.6£3.7 95.1+2.6

I2P-MAE (Zhang et al. 2022c) 97.0+1.8 98.3%1.3 92.6+5.0 95.5+3.0

Recon (Qi et al. 2023) 97.3x1.9 98.9+1.2 93.3+39 95.8+3.0

Table 4: Few-shot learning on ModelNet40. We report the
average classification accuracy (%) with the standard devia-
tion (%) of 10 independent experiments.

Few-shot Learning. Following previous works (Pang
et al. 2022; Qi et al. 2023), we conduct few-shot learning
experiments on the ModelNet40 (Wu et al. 2015) dataset us-
ing the “n-way, m-shot” configuration, where n is the num-
ber of randomly sampled categories and m is the number
of samples in each category. We use the above-mentioned
n x m samples for training, while 20 unseen samples from
each category for testing. Following standard protocol, we
conducted 10 independent experiments for each setting and
reported mean accuracy with standard deviation.

As indicated in Table 4, with limited downstream fine-
tuning data, our Point-FEMAE exhibits competitive perfor-
mance among existing single-modal and cross-modal meth-
ods, e.g.+1.4% classification accuracy to Point-MAE on the
10-way 10-shot split.

Part Segmentation. We assess the performance of Point-
FEMAE in part segmentation using the ShapeNetPart
dataset (Chang et al. 2015), comprising 16,881 samples
across 16 categories. Employing the same experimental set-
tings and segmentation head as Point-MAE and the mean
IoU across all categories, i.e., mIoU,. (%), and the mean IoU
across all instances, i.e., mloU; (%) are reported. We did
not include the results for Point-M2AE and I2P-MAE due
to their utilization of a more intricate segmentation head.

As shown in Table 5, our Point-FEMAE exhibits com-
petitive performance among both existing single-modal
and cross-modal methods, e.g.+0.7% mloU, to Point-MAE
(Pang et al. 2022) and slightly improvement compared to
Recon (Qi et al. 2023). These results demonstrate that our
approach exhibits superior performance in tasks such as part
segmentation, which demands a more fine-grained under-
standing of point clouds, demonstrating the superiority of
the compact representations learned by our method.



Methods Reference mloU, mloU;

Supervised Learning Only

PointNet (Qi et al. 2017a) CVPR 2017 80.4 83.7
PointNet++ (Qi et al. 2017b) NeurIPS 2017 81.9 85.1
DGCNN (Wang et al. 2019) TOG 2019 82.3 85.2
PointMLP (Ma et al. 2022) ICLR 2022 84.6 86.1

Single-Modal Self-Supervised Learning

NeurIPS 2017 83.4 84.7
ICCV 2021 83.4 85.1
CVPR 2022 84.1 85.6

MaskPoint (Liu, Cai, and Lee 2022) ECCV 2022 84.4 86.0

Point-MAE (Pang et al. 2022) ECCV 2022 84.2 86.1

Point-FEMAE - 84.9 86.3

Improvement (baseline: Point-MAE) - +0.7 +0.2

Transformer (Vaswani et al. 2017)
Transformer-OcCo (Wang et al. 2021)
Point-BERT (Yu et al. 2022)

Cross-Modal Self-Supervised Learning

ACT (Dong et al. 2022) ICLR 2023 84.7 86.1
Recon (Qi et al. 2023) ICML 2023 84.8 86.4

Table 5: Part segmentation results on the ShapeNetPart. The
mean IoU across all categories, i.e., mloU. (%), and the
mean IoU across all instances, i.e., mIoU; (%) are reported.

Ablation Study

Effects of data augmentation, masking strategy, and
LEM. Comparing our fine-tuning with the baseline Point-
MAE on ScanObjectNN (Uy et al. 2019), our method has
three main differences. 1) Data augmentation: unlike Point-
MAE with scale and translate during fine-tuning, we follow
ACT (Dong et al. 2022) and I2P-MAE (Zhang et al. 2022c)
to utilize a simple rotate augmentation. In addition, the data
augmentation is the same for all methods in the ModelNet40
dataset. 2) Masking strategy: we use a hybrid global and
local branch point masking strategy (e.g.Hybrid Mask). 3)
Network architecture: we add our Local Enhancement Mod-
ule (LEM) after each standard Transformer block in the local
branch. We examined the effect of each factor separately.
We designed four different structures to explore the ef-
fects of these factors, as shown in Table 6, A1 and A2 use
Point-MAE as the baseline, B1 and B2 have a simple hy-
brid global and local branch mask reconstruction without lo-
cal enhancement module (LEM), C1 and C2 add our LEM
at each layer of the Encoder based on the Point-MAE with
global random mask, and D1 and D2 are our Point-FEMAE
model. 1 and 2 indicate two different data augmentations.

Index #Params (M) Data Aug. Hybrid Mask LEM OBJ-BG OBJ-ONLY PB-T50-RS

Al 22.1 X X X 90.02 (baseline) ~ 88.29 (baseline) ~ 85.18 (baseline)
Bl 22.1 4 v X 89.67 (1 0.35) 88.30 (1 0.01) 85.32(10.14)
C1 27.4 X X v 90.36 (10.34) 89.33 (1 1.04) 85.67 (1 0.49)
D1 27.4 X v v 9277(12.75) 90.19 (1 1.90) 86.57 (1 1.39)
A2 22.1 v x 4 92.94 (baseline)  92.08 (baseline)  88.41 (baseline)
B2 22.1 v v X 9277 (L 0.17) 91.91 ([ 0.17) 88.75 (1 0.34)
C2 27.4 4 X v 93.63(11.19) 92.42 (1 0.34) 89.17 (1 0.76)
D2 27.4 v v v 95.18(1224) 93.29 (+1.21) 90.22 (1 1.81)

Table 6: Effects of data augmentation, hybrid masking strat-
egy, and LEM on the ScanObjectNN dataset.

Table 6 reports our ablation results, we can discover that:
1) data augmentation leads to a general and noticeable im-
provement (comparing A1-A2, B1-B2, C1-C2, and D1-D2);
2) simply combining two mask reconstructions can lead to a
suboptimal encoder (comparing A1-B1 and A2-B2). 3) in-
troducing LEM to Point-MAE provides a slight improve-

ment (comparing A1-C1 and A2-C2), and this improvement
may be due to the introduction of additional parameters, we
will discuss this issue in the next subsection. 4) Comparing
D1, and D2 with other results, we can discover a significant
improvement, which illustrates the superiority of our design,
which artfully combines a hybrid global and local branch
masking strategy and local enhancement modules.

Effects of Additional Parameters. To illustrate whether
our improvement is due to more parameters, we introduced
the patch-independent MLP and Self-Attention module that
focuses on global patches to replace our Local Enhancement
Module, respectively, within our masking and reconstruction
pipeline for pre-training. We reported their respective fine-
tuned results on the ScanObjectNN in Table 7.

Addition Module #Params (M) OBJ-BG OBJ-ONLY PB-T50-RS

Hybrid Mask w/o LEM 22.1 92.77 91.91 88.75
Hybrid Mask w/ 1-layer MLP 23.9 93.63 9243 89.14
Hybrid Mask w/ 3-layer MLPs 274 93.80 9243 89.17
Hybrid Mask w/ Self-Attention 29.2 93.98 92.60 89.42
Hybrid Mask w/ LEM 274 95.18 93.29 90.22

Table 7: Effects of additional network and parameters.

These outcomes demonstrate that incorporating an addi-
tional 1-layer MLP exhibits some enhancement when com-
pared to the Hybrid Mask w/o LEM. However, with the es-
calation of parameters, the model exhibits a limited poten-
tial, likely due to the MLP employing shared parameters
for individual patch processing, regardless of patch corre-
lations, similar to the Transformer’s feed-forward network.
Similarly, the additional Self-Attention layer, requiring more
parameters, yields a certain improvement, yet it parallels the
behavior of the Self-Attention layer within the Transformer,
consequently capping potential. These comparisons under-
score that the advancement of our approach stems from the
excellence of ingeniously combining the strategy of hybrid
global and local branch mask reconstruction with the design
based on local patch convolution, rather than being driven
by additional parameters.

Conclusion

In this paper, we first compare the pre-training efficiency
and efficacy of current single-modal and cross-modal MAE-
based point cloud pre-training pipelines and experimentally
demonstrate that the limited 3D representation of existing
single-modal MAE-based point cloud pre-training methods
is due to biases in the existing masking strategies towards
global and local representations. To address this issue, we
propose to learn compact 3D representations via effective
Point Feature Enhancement Masked Autoencoders, which
mainly consist of a global branch and local branch to cap-
ture latent semantic features. Meanwhile, to further perceive
fine-grained local context at larger scales, we propose a Lo-
cal Enhancement Module with local patch convolution in
the local branch. Extensive experiments demonstrate the ad-
vancement of our design.
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More Experimental Analysis
Effect of LEM Parameter Count

MLP scale #Params. (M) OBJ-BG OBJ-ONLY
Point-MAE 22.09 (baseline)  92.94 (baseline)  92.08 (baseline)
Point-FEMAE (scale=1/16)  22.44 (1 0.35) 94.84 (1 1.90) 93.12 (1 1.04)
Point-FEMAE (scale=1/8)  22.78 (1 0.69) 94.84 (1 1.90) 93.46 (1 1.38)
Point-FEMAE (scale=1/4) ~ 23.44 (1 1.35) 94.84 (1 1.90) 93.29 (1 1.21)
Point-FEMAE (scale=1/2) ~ 24.77 (1 2.68) 94.84 (1 1.90) 93.29 (1 1.21)
Point-FEMAE (scale=1) 27.43 (1 5.34) 95.18 (1 2.24) 93.29 (1 1.21)

Table 8: Effect of LEM Parameter Count.

We can alter the parameter count of LEM by scal-
ing the dimensions of the MLP, allowing us to observe
the performance of our Point-FEMAE with fewer parame-
ters. Specifically, as illustrated in Figure 4, we replace the
fixed-dimension MLPs in the original LEM with scalable-
dimension MLPs and assess the classification accuracy of
our Point-FEMAE on the ScanObjectNN (Uy et al. 2019)
dataset for different scales.

Table 1 presents our experimental results. As shown in
the table, when progressively reducing the parameters of
the Local Enhancement Module (LEM), the model’s rep-
resentation capacity does not show significant degradation.
For instance, when scale=1/16, the classification accuracy in
both OBJ-BG and OBJ-ONLY only decreases by 0.34% and
0.17% respectively, compared to the scale=1 variant. This
reduction is negligible considering the substantial improve-
ments relative to the baseline. Additionally, at this point,
our method only adds an additional 0.35M parameters, high-
lighting that the superiority of our approach stems from the
design of our Point-FEMAE rather than extra parameters.

Effect of Different Architectures and Designs

The network structure design and other factors have a certain
impact on the experimental results (Goyal et al. 2021; Bai
et al. 2021; Gudibande et al. 2022). We conducted a more
comprehensive analysis to delve into the intricate nuances of
various architectures and designs on the single-modal MAE
approach. Specifically, we scrutinized eight distinct network
architectures, visually depicted in Figure 7.

Among these, Architecture A corresponds to the conven-
tional single-branch Point-MAE (Pang et al. 2022) utiliz-
ing global random masks. Architecture B involves a single-
branch Point-MAE approach with the application of local

block masks. Architecture C encompasses a single branch
Point-MAE method incorporating global random masks and
integrated Local Enhancement Modules (LEM). Architec-
ture D represents a single-branch Point-MAE model with
local block masks and integrated LEM. Architecture E ex-
clusively employs global-local mask dual branches without
integrating LEM. Architecture F adopts global-local mask
dual branches and introduces LEM to the global branch. Ar-
chitecture G is our proposed Point-FEMAE model. Lastly,
Architecture H employs global-local mask dual branches
and incorporates shared LEMs into both branches.

We report the classification accuracy of these eight archi-
tectures on two variants of ScanObjectNN (OBJ-BG and
OBJ-ONLY) (Uy et al. 2019). All experiments, including
those discussed in the main paper, report the highest accu-
racy achieved across five different random seeds.

Architecture  # Params. (M) OBJ-BG OBJ-ONLY
A 22.1 92.94 (baseline) 92.08 (baseline)
B 22.1 92.60 (] 0.34) 91.91 (] 0.17)
C 27.4 93.63 (1 0.69) 92.42 (1 0.34)
D 27.4 95.01 (1 2.07) 93.12 (1 1.21)
E 22.1 92.77 (1 0.17) 91.91 (] 0.17)
F 274 93.80 (1 0.86) 92.25 (1 0.17)
G 274 95.18 (1 2.24) 93.29 (11.12)
H 274 94.49 (1 1.55) 92.43 (1 0.35)

Table 9: Effect of different architectures and designs.

By comparing the experimental results in Table 2, we can
draw the following conclusions: 1) Within the single-branch
designs, the global random masking strategy outperforms
the local block masking strategy due to its ability to cap-
ture the complete shape of the point cloud (comparing archi-
tectures A and B). 2) The inclusion of the Local Enhance-
ment Module (LEM) leads to improved network representa-
tion capacity. However, when LEM is incorporated into the
global branch, this improvement is significantly limited, as
seen in architectures C and F. This limitation arises due to
the absence of local details in the global branch, which con-
flicts with the concept of the Local Enhancement Module.
On the contrary, incorporating LEM into the local branch
notably enhances performance, as seen in architectures D
and G. This is attributed to the local branch effectively pre-
serving the intricate local details of the point cloud. 3) Fully
shared Transformers and LEMs (architectures E and H) are
suboptimal. This could be attributed to the fact that the dif-
ferent reconstruction targets for local and global features in
the shared Encoder might lead to catastrophic forgetting dur-
ing learning, thereby limiting the model’s representation ca-
pacity.

Effect of Different /-Values in LEM

The Local Enhancement Module (LEM) enhances local fea-
tures by employing local convolutions to aggregate infor-
mation from K nearest neighboring point patches. In this
context, we conducted experimental analyses to explore the
model’s representational capacity when considering varying
numbers of K. As illustrated in Figure 5, our empirical ob-
servations suggest that the highest classification accuracy is
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Figure 5: Effect of different K -values in LEM.
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Figure 6: Effect of different mask rates.

attained with a K of 20. Additionally, a similar level of ca-
pability is achieved when K is set to 10. This implies that
the aggregation of patch blocks within the range of 10 to
20 is more effective in capturing fine-grained details within
the local structure of the point cloud. For our experimental
setup, we selected K = 20.

Effect of Different Mask Rates

We conducted experiments to compare the effects of differ-
ent mask rates during self-supervised pre-training. As shown
in Figure 6, our empirical observations suggest that using a
60% mask rate yields relatively better results.
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Figure 7: Eight different network architectures based on Point-MAE.



