
Procedural Level Generation with Diffusion Models
from a Single Example

Shiqi Dai1, Xuanyu Zhu1, Naiqi Li1, Tao Dai3, Zhi Wang*1,2,4

1Shenzhen International Graduate School, Tsinghua University
2Tsinghua-Berkeley Shenzhen Institute, Tsinghua University

3College of Computer Science and Software Engineering, Shenzhen University
4Peng Cheng Laboratory

{daisq21,zhuxy22}@mails.tsinghua.edu.cn, daitao@szu.edu.cn, {linaiqi,wangzhi}@sz.tsinghua.edu.cn

Abstract

Level generation is a central focus of Procedural Content
Generation (PCG), yet deep learning-based approaches are
limited by scarce training data, i.e., human-designed levels.
Despite being a dominant framework, Generative Adversarial
Networks (GANs) exhibit a substantial quality gap between
generated and human-authored levels, alongside rising train-
ing costs, particularly with increasing token complexity. In
this paper, we introduce a diffusion-based generative model
that learns from just one example. Our approach involves two
core components: 1) an efficient yet expressive level repre-
sentation, and 2) a latent denoising network with constrained
receptive fields. To start with, our method utilizes token se-
mantic labels, similar to word embeddings, to provide dense
representations. This strategy not only surpasses one-hot en-
coding in representing larger game levels but also improves
stability and accelerates convergence in latent diffusion. In
addition, we adapt the denoising network architecture to con-
fine the receptive field to localized patches of the data, aim-
ing to facilitate single-example learning. Extensive experi-
ments demonstrate that our model is capable of generating
stylistically congruent samples of arbitrary sizes compared
to manually designed levels. It suits a wide range of level
structures with fewer artifacts than GAN-based approaches.
The source code is available at https://github.com/shiqi-dai/
diffusioncraft.

Introduction
3D content creation tools form the basis of many emerg-
ing metaverse applications. Despite this, current approaches
often rely heavily on manual labor, resulting in high costs
and inefficiencies. Gaming is considered as the medium that
most closely resembles the concept of metaverse. A down-
stream task in game study, i.e., level generation, utilizes al-
gorithms to generate reasonable game levels automatically.
Addressing this task can effectively assist in the efficient and
automatic construction of a large number of 3D scenes for
game-based metaverse applications.

The game levels studied in this article can be simplified as
2D/3D arrays of tokens, where each token represents a type
of object or part of an object. For example, in Minecraft, a

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Random generated levels from one Super Mario
Bros level. Our model is trained to capture the internal dis-
tribution of a single level and can subsequently generate lev-
els of arbitrary sizes.

tree is composed of “oak wood” and “leaf” tokens. In token-
based level generation that has similar meanings to pixels,
traditional algorithms are based on search, grammar, or rules
(Liu et al. 2021). Recently, approaches based on deep learn-
ing, which can automatically learn complex patterns, have
made significant breakthroughs. GAN and its variants are
currently popular models (Awiszus, Schubert, and Rosen-
hahn 2020, 2021; Park et al. 2019; Volz et al. 2018). How-
ever, deep learning-based methods face two key challenges
in level generation: data scarcity and content generation in-
coherence. Most game levels are designed manually, and it
is usually difficult to obtain a large dataset, which is not
friendly to data-sensitive models. In order to learn from
small data, one of the approaches is to design generative
models to learn from a single level. The cutting-edge work
is to adopt pyramid-shaped GANs with multi-scale train-
ing (Awiszus, Schubert, and Rosenhahn 2020, 2021). The
training level is downsampled into different resolutions and
groups of GANs learn the internal distribution in a coarse-
to-fine manner, starting from the lowest resolution scale. Al-
though this network structure addresses the demand for data-
intensive generative models, errors accumulate during gen-
eration in multi scales (Wang et al. 2022), leading to numer-
ous low-quality samples, i.e., content incoherence such as
unclear shapes and meaningless floating blocks. This kind

of incoherence and discontinuities affect the playability and
aesthetics of level. In order to find samples that satisfy speci-
fied requirements, evolutionary search is used to explore the
latent space of a GAN (Volz et al. 2018; Edwards, Jiang, and
Togelius 2021; Fontaine et al. 2021). Previous works have
demonstrated that GAN-based generative models have a vast
latent space, requiring conditional constraints or search al-
gorithms to improve the quality of generated levels.

In this paper, we propose an unconditional procedural
level generation approach training a latent diffusion model
on a single level. There are two major challenges in this task.
One is to decide on which space to perform the diffusion
process. Recent works have found that training the diffusion
model in such a continuous token space enables faster and
more stable convergence. The original level representation
varies in discrete space. By utilizing the dense representa-
tion method word2vec from Natural Language Processing
(NLP), we map the one-hot encoding training level onto a
high-dimensional embedding space using the semantic la-
bels of tokens. The other one is to enable diffusion models
to learn from a single level. Our model is based on DDPM,
which successfully leverages diffusion models in image syn-
thesis. We restrict the receptive field of the denoising net-
work and propose a new training algorithm to support train-
ing on one level. Compared with GAN-based models, our
model is only trained on a single scale to capture the inter-
nal distribution of the training level.

Experiments show that our model can generate a large
amount of available token-based levels with fewer artifacts
than GAN-based results. Our model enables its users to gen-
erate levels based on a single reference example, which pro-
vides insights and guidance for users in their creation pro-
cess. The main contributions of this work are summarized
as follows:

• We propose a diffusion model trained on a single token-
based level. Our model demonstrates the ability to gen-
erate diverse, playable, and high-quality samples that lo-
cally resemble the training example.

• We draw a connection between level generation using se-
mantic tokens and text generation within the embedding
space. It is proved that dense token representation and
training loss inspired by text generation improve the per-
centage of available generated results.

• We introduce two keys to limit the receptive fields of our
diffusion model: fully convolutional networks with resid-
ual connections and training using large crops, aiming to
capture the internal distribution of the game level.

• Experimental results show that our model outperforms
the baseline approaches and achieves excellent results in
terms of diversity and quality for the generated levels.

Related Work
Our work is related to two fields: procedural content gen-
eration and single example generation. In this section, we
will give a brief overview of the main achievements in these
areas and explain how they are connected to our method.

Procedural Content Generation
Procedural Content Generation (PCG) involves the auto-
mated or algorithmic creation of game assets like rules, di-
alog, models and game mechanics with minimal human in-
put (Shaker, Togelius, and Nelson 2016). Traditional PCG
techniques encompass search-based, rule-based, grammar-
based and solver-based methods. Our work is situated within
an emerging research domain, procedural content genera-
tion via machine learning (PCGML), which aims to train
complex neural models by learning from preexisting human-
authored content (Summerville et al. 2018). (Liu et al. 2021)
provided an overview of the PCGML field, with a specific
emphasis on deep learning.

Studies in both industry and academia have focused a lot
on generating playable game levels. Typical model choices
for generating game levels comprise variational autoen-
coders (Snodgrass and Sarkar 2020), generative adversar-
ial networks (GANs) (Park et al. 2019; Torrado et al. 2020;
Volz et al. 2018; Giacomello, Lanzi, and Loiacono 2018),
and reinforcement learning (Khalifa et al. 2020). Among
them, GANs are popular for generating content represented
by pixel-based images or 2D/3D array of tiles, such as Su-
per Mario Bros (Volz et al. 2018) and Doom (Giacomello,
Lanzi, and Loiacono 2018). To acquire target levels that vary
across a set of specified gameplay measures, evolutionary
computation such as Quality Diversity Algorithms (QDAs)
is adopted to explore the latent space of a GAN (Fontaine
et al. 2021).

Our work is focused on token-based level generation
(Salge et al. 2018), with a particular emphasis on utilizing
Minecraft and Super Mario Bros as representative examples
from the realms of 2D and 3D games, respectively. Com-
pared with other 3D video games, Minecraft has plenty of
tokens. Each token contains a type of object or part of it,
such as grass, wood, and air, represented by a semantic label.
(Awiszus, Schubert, and Rosenhahn 2021) proposed World-
GAN, an architecture similar to SinGAN that learns from
a single level in an unsupervised way. (Sudhakaran et al.
2021) adopted Neural Cellular Automata (NCA) (Mord-
vintsev et al. 2020) in reconstructing Minecraft artefacts.
(Merino, Charity, and Togelius 2023) addressed an applica-
tion of interactive evolution with latent variable evolution to
procedurally generate target Minecraft structures.

Learning a Generative Model from a Single
Example
Exploring generative models that learn from a single ex-
ample has recently attracted increasing attention from re-
searchers. This task, as the opposite of training on large data,
is suitable for the domains which have difficulty in collecting
large datasets. A mainstream method is to divide the single
example into several parts and design networks to learn the
patch distribution. SinGAN (Shaham, Dekel, and Michaeli
2019) introduced a multi-scale pyramid architecture which
train a GAN at each scale after downsampling the training
image. Several works based on SinGAN have been applied
in other domains. (Wu and Zheng 2022) proposed to gener-
ate 3D shape with tri-plane hybrid representation (Wu and

Figure 2: Method overview. Given a piece of game level as
input x , we initially train block2vec token embeddings to
map the cropped level to an implicit latent representation,
denoted as xe. Then we train a denoising network pθ on it
to learn the distribution of latent features. At inference time,
we sample a new latent feature using the diffusion model and
then map the resulting embeddings to the nearest tokens.

Zheng 2022). Drop the GAN (Granot et al. 2022) replaced
the generator with conventional algorithm module and per-
forms better than convolutional based generator. Previous
GAN-Based methods (Awiszus, Schubert, and Rosenhahn
2020, 2021) introduced a downsampling algorithm of tokens
and generated available samples both in 2D and 3D level
generation. (Siper, Khalifa, and Togelius 2022) viewed level
generation as repair and iteratively generated levels from a
random starting example.

Unlike GANs, previous works about training diffusion
models on a single example only improved one scale train-
ing, and they can achieve the same effect as GANs. Sin-
Diffusion (Wang et al. 2022) limited the receptive field of
denosing work by lessening the downsample and unsam-
ple operation and other components. SinFusion (Nikankin,
Haim, and Irani 2022) gave up all dowansample and upsam-
ple layers and replaced it with a fully convolutional chain of
ConvNext blocks with residual connections. Both of the two
works lighten the original denosing network and prevents
the model from training global features to cause pattern col-
lapse or overfitting.

Methodology
In this section, we propose a denoising diffusion probabilis-
tic model (DDPM) that can capture the internal patch dis-
tribution of a single token-based game level. The overview
of our method is in Fig. 2. The key point is that the recep-
tive field of the denoising network should be designed to be
small enough to learn patch-level features, analogously to
the use of patch discriminators in GAN-based approaches.
With that, the trained diffusion model is able to produce
patch-level variations while preserving the global structure.

Directly training a diffusion model on a game level with
sparse representation is computationally demanding and
hard for the model to converge. To address this issue, we

Figure 3: Visualization of the embeddings learned by
block2vec in the example “vanilla mineshaft”. Each block
is represented by its corresponding texture map. These 32-
dimensional embeddings are transformed to three dimen-
sions using the Uniform Manifold Approximation and Pro-
jection (McInnes, Healy, and Melville 2018).

first represent the level as word embedding. Specifically, we
make use of the semantic label of each token and encode it
into an implicit latent embedding. Given the encoded level
of embeddings, we train a latent diffusion model on it with
modification on network and training procedure. Based on
these designs, the new piece of level generated by our model
can be sampled with random noise.

Level Representation
In previous encoding schemes for levels, the common prac-
tice was to employ one-hot encoding to represent discrete
tokens within the token space, such as in games like Doom
and Mario. However, when faced with games that possess an
extensive array of tokens and undergo continuous updates,
such as in the case of Minecraft, the use of one-hot encoding
leads to an escalating burden on generative models training
and GPU memory. To address this issue, a potential solution
involves utilizing dense fixed-size vectors to represent each
token. This bears resemblance to the task of training world
embeddings in the realm of Natural Language Processing
(NLP).

For a piece of 2D token-based level, denoted as L, it
comprises discrete tokens denoted as t ∈ T , resulting in
a layout L = [tij]m×n. Here, m and n signify the count
of tokens in the respective dimensions, and T represents
the set of all token types within the considered fragment.
Each token t is associated with a semantic label compris-
ing one to three words (e.g., “Coin Question Block”). The
embedding function EMB(tij) serves to map each token
to a vector within Rd. Consequently, the embedding of a
level fragment L, measuring m × n in size, is defined as
EMB(L) = [EMB(tij)] ∈ Rmnd.

Classic methods for training word embeddings encom-
pass Word2Vec (Mikolov et al. 2013), GloVe (Pennington,
Socher, and Manning 2014), as well as techniques based on
pre-trained Language Models (such as BERT (Devlin et al.

Figure 4: Denoising network architecture. Notably we have
removed all upsampling and downsampling operations as
well as the intermediate attention layers. This simplification
is to confine the network’s receptive field to local features of
the data, while retaining fully connected residual blocks.

2018), GPT (Radford et al. 2018), CLIP (Radford et al.
2021)), among others. Notably, owing to the considerably
smaller number of token types, i.e., |T |, within our experi-
mental token-based levels as compared to the expansive vo-
cabulary of general NLP, the task’s specific nature greatly
reduces the token variety to roughly 100 or fewer, even in the
case of a game like Minecraft, which might encompass thou-
sands of tokens. Consequently, the necessity to jointly train
generative models and the embedding function EMB, as ob-
served in NLP text generation, is obviated. Instead, train-
ing directly on the set T is sufficient. Likewise, this implies
that there is no need to derive token representations from a
Language Model, since while their embeddings are semanti-
cally rich, they are overly complex. A dimension of d = 32
suffices for our task, as evidenced by WorldGAN (Awiszus,
Schubert, and Rosenhahn 2021).

Empirical results indicate that a simple two-layer skip-
gram model is suitable for all existing procedural level gen-
eration datasets in Fig. 3. This approach, initially introduced
by WorldGAN (Awiszus, Schubert, and Rosenhahn 2021)
to overcome the challenges posed by the uncertain channel
length (length of one-hot encoding) in Minecraft levels dur-
ing GAN training, has been expanded to encompass all 2D
and 3D token-based level games. This extension attests to
the versatility of this representation method, which adeptly
transforms one-hot encoded tokens into vectors infused with
greater semantic information. Continuous data structures are
better suited as inputs for latent diffusion models, and they
are more conducive to training.

Denoising Network Architecture
A straightforward approach for the denoising network in-
volves utilizing the original U-Net structure from DDPM,
treating the level embeddings as latent features akin to im-
ages. Nonetheless, this methodology is susceptible to “over-
fitting”, whereby the model tends to solely produce level em-
beddings identical to the input, with minimal variance. To
circumvent this limitation, we engineer our denoising net-
work with a confined receptive field, thereby averting the

“overfitting” issue.
Fig. 4 delineates the architectural blueprint of our denois-

ing network. To deliberately constrain the receptive field, we
excise all necessitated upsampling and downsampling op-
erations, thereby ensuring that the data flow during train-
ing remains devoid of spatial dimension reduction across
the strata. The pre-existing U-Net structure transmutes into
an entirely convolutional sequence of residual blocks, inter-
connected by residual connections. The count of these res-
blocks, functioning as a hyperparameter, substantively im-
pacts the diversity of the output from the diffusion model.

Training Details
Large Random Crops In our empirical exploration, we
observed that, when confronted with diminutive level di-
mensions such as 40×40 or 16×200, the model’s capacity to
discern the global structure, rather than fixate solely on local
facets, remains compromised even with a shallow network
depth. To address this, we opt to subject the training data
to a process of random cropping, encompassing substantial
dimensions. This maneuver ensures that the model acquires
the capacity to glean insights from patch-level distribution.
It is noteworthy that we attempted data augmentation tech-
niques, such as rotations and flips, yet their impact remained
unremarkable, occasionally instigating mode collapse—an
outcome characterized by excessive noise within the output.
The cropping ratio, positioned as a hyperparameter, thus or-
chestrates a harmonious balance between the visual quality
and diversity of the generated output. The ramifications of
cropping size on the diversity of generated quality are delin-
eated within the ablation experiments section.

Loss In the course of each iterative training step, our de-
noising network is trained to anticipate and mitigate noise
perturbations. Nevertheless, the stability and convergence of
this network within the context of procedural level genera-
tion exhibit a degree of fragility. In response, we undertake
a strategic adjustment by revising the loss function to target
the prediction of the initial state variable, denoted as x0. This
strategic adaptation engenders two notable benefits: it accel-
erates the training process and engenders improved outputs
with regard to visual fidelity.

The loss function of our model is as follows:

L(θ) = Exe
0,ϵ

[∥∥xe
0 − x̃e

0,θ (x
e
t , t)

∥∥2] . (1)

Conjointly, our training procedure is shown in Alg. 1.

Experiments
Setup
Datasets To evaluate the effectiveness and generality of
our method, we choose two games that are widely used
for procedural content generation: Minecraft and Super
Mario Bros (SMB). For Minecraft level generation, the
dataset comes from a large handcrafted Minecraft world
called DREHMAL:PRIMΩRDIAL (Awiszus, Schubert, and
Rosenhahn 2021). The training data includes levels with
sizes of 40 × 40 × 40 and 100 × 40 × 100, covering six

Figure 5: Random samples from a single Minecraft (up) or a single SMB (down) level. The training examples are labeled by red
boxes. The size and aspect ratios of the generated results can be adjusted by modifying the spatial dimensions of the sampled
noise xe

T .

Algorithm 1: Training on a single level x

1: xe ← EMB(x)
2: repeat
3: xe

0 ← Crop(xe)
4: t ∼ Uniform(1, . . . , T = 50)
5: ϵ ∼ N (0, I)
6: Take gradient descent step on:

∇θ

∥∥∥xe
0 − x̃e

0,θ

(√
αtx

e
0 +
√
1− αtϵ, t

)∥∥∥2
7: until converged

biomes. The SMB level dataset comes from VGLC (Sum-
merville et al. 2016), which is a corpus of video game lev-
els in easily parseable formats. We train our model on each
piece of level and evaluate the fidelity and diversity of the
generated results.

Evaluation Metric To quantitatively evaluate the quality
and diversity for generated levels, we adopt the following
metrics.

1) Tile Pattern KL-Divergence (Lucas and Volz 2019) :
To measure the diversity between the generated content, we
used Tile Pattern KL-Divergence (TPKLDiv) to measure the
structural similarity between the 20 generated levels. The
formula is as follows:

DKL(P∥Q) =
∑
s∈SP

P ′(s) log

(
P ′(s)

Q′(s)

)
. (2)

P ′(s) refers the frequency of token s in the original level
and Q′(s) refers its frequency in the generated level. s ∈
SP refers the collection of tokens. We use three tile pattern
windows (3×3×3, 5×5×5, 10×10×10) to calculate the

TPKL-Div. We measure two kinds of TPKL-Div between
the real and learned level distribution, and sum it up with
weight w = 0.5.

2) Levenshtein Distances (Levenshtein et al. 1966) : In
order to assess the diversity of generated samples, we adopt
the Levenshtein distance as a measure to quantify the differ-
ences among results. The Levenshtein distance, also known
as the edit distance, is employed as a metric to quantify
the similarity between two strings. It denotes the minimal
count of editing operations, including insertions, deletions,
and substitutions, required to transform one string into an-
other. Specifically, we transform the level into a linear se-
quence and replace each token with a number, so that we get
a stringified level to calculate distance.

Implementation Details The whole framework is im-
plemented by PyTorch. Experiments are performed on
NVIDIA Tesla V100. Each level is trained on one GPU with
0.9999 EMA decay. The activation function in network is
LeakyReLU. The latent diffusion model has a max time step
T = 1000. We train it for 50000 iterations with an initial
learning rate 5× 10−4 and a batch size of 8.

Qualitative Evaluation
Fig. 5 showcases the qualitative outcomes of random-
generated levels from both Minecraft and SMB. By adjust-
ing the dimensions of the sampled Gaussian noise, we can
resize the input to different sizes and shapes, while retaining
its essential local characteristics. As can be seen, the style
of our generated samples matches that of the level they were
trained on, concurrently affording rational local variations in
terms of geometry.

In Super Mario Bros (SMB) level generation, we pro-
vide more metrics to evaluate our model performance shown

Figure 6: Visual comparison. We compare the generated Minecraft levels from our model with those produced by GAN-based
baselines. Notably, our model is capable of generating semantic structures, as evidenced by the detailed house features in the
first row. Furthermore, our generated results exhibit fewer artifacts compared to the floating blocks present in the GAN-based
results shown in the second row.

in Table 2. To measure playability, we compute the aver-
age percentage of level completed by A* agent over 100
generated levels. Also, we perform a subjective visual test
to evaluate the generation quality. We randomly select 100
generated levels for each model and invite three volunteers
to score each subset based on their aesthetics. Their aver-
age scores are counted as user preference. Table 2 indicates
that our diffusion-like method performers better than GAN-
based baseline.

Comparison with Previous Methods
We compare our method against World-GAN and TOAD-
GAN with Minecraft results. They are GAN-based single
level generative model. Since the original TOAD-GAN takes
2D SMB level as input, we have adapted the model archi-
tecture to accommodate inputs from 3D Minecraft levels,
marked as TOAD-GAN 3D.

The quantitative results are shown in Table 1. Compared
to World-GAN and TOAD-GAN 3D, our model performs
best in TPKL-Div, which means the distribution of our gen-
erated levels is closer to the real level than GAN-based meth-
ods. As for average Levenshtein distance between the gen-
erated levels, the diversity of our generated levels is in an
order of magnitude compared to the baselines.

In addition to the quantitative results, the visual dif-
ferences among the examples of “village”, “swamp”, and
“plains” are presented in Fig. 6. In particular, levels gen-
erated by World-GAN and TOAD-GAN 3D have unknown
semantic structures like floating blocks. This is largely due
to the fact that GAN-based approaches train on sparse rep-
resentations and accumulate errors during pyramid pipeline
(Wang et al. 2022). Instead, our approach provides more de-
tails and fine generation to make the output more reasonable,
as evidenced by the house shape and tree shape highlighted
in Fig. 6.

Ablation Study
We conduct ablation studies to validate several design
choices of our method. We measure the sample quality using
the TPKL-Div Levenshtein distance on 20 samples. Specif-
ically, we compare our proposed method with the following
variants:

W/O Large Random Crops When learning from small-
scale samples (40×40×40), we employ the generator (with
the depth of 1) without applying random cropping to the in-
put. Additionally, we examine the impact of cropping ratios
on the generated samples. Table 3 demonstrates that omit-

Metrics Methods
Examples

Village Swamp Desert Plains Beach Mineshaft

TPKL-Div ↓
TOAD-GAN 3D 8.09 11.89 11.96 6.77 14.73 15.82

World-GAN 8.04 11.19 28.68 13.68 14.75 15.76

Ours 5.60 9.43 11.65 4.92 14.28 12.79

Levenshtein ↑
TOAD-GAN 3D 8479.68 15579.00 1314.69 5066.27 14221.77 9653.01

World-GAN 10831.22 7653.78 2657.54 5235.67 15903.74 9960.29

Ours 10324.40 14431.89 5087.05 4148.61 15101.45 9324.93

Table 1: Quantitative evaluation. ↑: a higher metric value is better; ↓: a lower metric value is better. We compare the visual
quality with TPKL-Div and results diversity with Levenshtein distance. Bold scores are the best results of the three algorithms.

Level No. Model %Completed % User
Preference

1-2 TOAD-GAN 86.5 66.92
1-2 Ours 87.8 73.33
4-2 TOAD-GAN 68.8 66.05
4-2 Ours 70.2 74.43

Table 2: SMB level playability and human preference score.

%Crop Size TPKL-Div↓ Levenshtein↑

90 5.34 7881.32

80 5.60 10324.40

70 5.35 12782.03

60 5.62 13007.54

50 6.03 13382.25

Table 3: Ablation study on Crop Size. ↑: a higher metric
value is better; ↓: a lower metric value is better. It can be
observed that the generated outputs achieve enhanced visual
quality and diversity when a suitable crop size is employed.

ting random cropping from the training data leads to “over-
fitting”, where the model generates levels that are exactly
the same as the original ones. Furthermore, the cropping ra-
tio affects the balance between level diversity and the quality
of the generated outputs.

Objective Parametrization We suggest having the diffu-
sion model predict x0 directly. In this case, we compare this
strategy with the traditional parameterization used in image
generation, where a denoising network is used to predict the

Prediction TPKL-Div↓ Levenshtein↑

ϵ 19.08 50492.19

x0 7.49 94528.69

Table 4: Ablation study on Object Parametrization. ↑: a
higher metric value is better; ↓: a lower metric value is bet-
ter. Predicting x0 is better in single example case.

noise ϵ. Table 4 demonstrates that parametrizing by x0 con-
sistently yields good performance across different dimen-
sions. In single example case, x0 is fixed and therefore easier
to predict. Predicting the noise ϵ, makes the diffusion model
hard to converge.

Conclusions and Future Work
In this work, we introduce an unconditional procedural level
generation approach that trains a latent diffusion model on a
single level. To extract deeper semantic meaning from level
tokens and apply them in diffusion models, we employ the
word embedding algorithm called word2vec and extend it to
block2vec. Subsequently, in order to train a diffusion model
using a single training data, we impose restrictions on the re-
ceptive field of the denoising network. This ensures that the
model can effectively learn the internal distribution of latent
features. Experimental results demonstrate that our model is
capable of generating samples that closely resemble those
designed by humans, as seen in existing methods.

Nevertheless, our work does have several limitations.
Firstly, it requires more time and computational resources
in both training and inference compared to GANs (Kulikov
et al. 2023). Additionally, achieving conditional generation
that aligns with designer’s requirements is an area for further
exploration. Future endeavors could involve incorporating
user guidance or prompts to enhance the generative process.

Acknowledgments
This work was supported in part by the Na-
tional Key Research and Development Project of
China (Grant No. 2023YFF0905502), National Nat-
ural Science Foundation of China under Grant
62302309, and Shenzhen Science and Technology
Program (Grant No. RCYX20200714114523079 and
JCYJ20220818101014030). Also, we would like to thank
Kuaishou for sponsoring the research.

References
Awiszus, M.; Schubert, F.; and Rosenhahn, B. 2020. Toad-
gan: coherent style level generation from a single example.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 16,
10–16.
Awiszus, M.; Schubert, F.; and Rosenhahn, B. 2021. World-
GAN: a Generative Model for Minecraft Worlds. In 2021
IEEE Conference on Games (CoG), 1–8.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Edwards, M.; Jiang, M.; and Togelius, J. 2021. Search-based
exploration and diagnosis of TOAD-GAN. In Proceedings
of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, volume 17, 140–147.
Fontaine, M. C.; Liu, R.; Khalifa, A.; Modi, J.; Togelius, J.;
Hoover, A. K.; and Nikolaidis, S. 2021. Illuminating mario
scenes in the latent space of a generative adversarial net-
work. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, 5922–5930.
Giacomello, E.; Lanzi, P. L.; and Loiacono, D. 2018.
Doom level generation using generative adversarial net-
works. In 2018 IEEE Games, Entertainment, Media Con-
ference (GEM), 316–323. IEEE.
Granot, N.; Feinstein, B.; Shocher, A.; Bagon, S.; and Irani,
M. 2022. Drop the gan: In defense of patches nearest neigh-
bors as single image generative models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 13460–13469.
Khalifa, A.; Bontrager, P.; Earle, S.; and Togelius, J.
2020. Pcgrl: Procedural content generation via reinforce-
ment learning. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
volume 16, 95–101.
Kulikov, V.; Yadin, S.; Kleiner, M.; and Michaeli, T. 2023.
Sinddm: A single image denoising diffusion model. In Inter-
national Conference on Machine Learning, 17920–17930.
PMLR.
Levenshtein, V. I.; et al. 1966. Binary codes capable of cor-
recting deletions, insertions, and reversals. In Soviet physics
doklady, volume 10, 707–710. Soviet Union.
Liu, J.; Snodgrass, S.; Khalifa, A.; Risi, S.; Yannakakis,
G. N.; and Togelius, J. 2021. Deep learning for procedu-
ral content generation. Neural Computing and Applications,
33(1): 19–37.

Lucas, S. M.; and Volz, V. 2019. Tile pattern kl-divergence
for analysing and evolving game levels. In Proceedings
of the Genetic and Evolutionary Computation Conference,
170–178.
McInnes, L.; Healy, J.; and Melville, J. 2018. Umap: Uni-
form manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426.
Merino, T.; Charity, M.; and Togelius, J. 2023. Interactive
Latent Variable Evolution for the Generation of Minecraft
Structures. In Proceedings of the 18th International Confer-
ence on the Foundations of Digital Games, 1–8.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Mordvintsev, A.; Randazzo, E.; Niklasson, E.; and Levin,
M. 2020. Growing neural cellular automata. Distill, 5(2):
e23.
Nikankin, Y.; Haim, N.; and Irani, M. 2022. SinFusion:
Training Diffusion Models on a Single Image or Video.
arXiv preprint arXiv:2211.11743.
Park, K.; Mott, B. W.; Min, W.; Boyer, K. E.; Wiebe, E. N.;
and Lester, J. C. 2019. Generating educational game lev-
els with multistep deep convolutional generative adversarial
networks. In 2019 IEEE Conference on Games (CoG), 1–8.
IEEE.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Proceedings of
the 2014 conference on empirical methods in natural lan-
guage processing (EMNLP), 1532–1543.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International conference on
machine learning, 8748–8763. PMLR.
Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I.;
et al. 2018. Improving language understanding by gener-
ative pre-training.
Salge, C.; Green, M. C.; Canaan, R.; and Togelius, J. 2018.
Generative design in minecraft (gdmc) settlement genera-
tion competition. In Proceedings of the 13th International
Conference on the Foundations of Digital Games, 1–10.
Shaham, T. R.; Dekel, T.; and Michaeli, T. 2019. Singan:
Learning a generative model from a single natural image. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 4570–4580.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
content generation in games.
Siper, M.; Khalifa, A.; and Togelius, J. 2022. Path of de-
struction: Learning an iterative level generator using a small
dataset. In 2022 IEEE Symposium Series on Computational
Intelligence (SSCI), 337–343. IEEE.
Snodgrass, S.; and Sarkar, A. 2020. Multi-domain level gen-
eration and blending with sketches via example-driven bsp
and variational autoencoders. In Proceedings of the 15th in-
ternational conference on the foundations of digital games,
1–11.

Sudhakaran, S.; Grbic, D.; Li, S.; Katona, A.; Najarro, E.;
Glanois, C.; and Risi, S. 2021. Growing 3d artefacts and
functional machines with neural cellular automata. arXiv
preprint arXiv:2103.08737.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGML). IEEE Transactions on Games, 10(3): 257–270.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and n’on Vil-
lar, S. O. 2016. The VGLC: The Video Game Level Cor-
pus. Proceedings of the 7th Workshop on Procedural Con-
tent Generation.
Torrado, R. R.; Khalifa, A.; Green, M. C.; Justesen, N.; Risi,
S.; and Togelius, J. 2020. Bootstrapping conditional gans
for video game level generation. In 2020 IEEE Conference
on Games (CoG), 41–48. IEEE.
Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A.; and
Risi, S. 2018. Evolving mario levels in the latent space of a
deep convolutional generative adversarial network. In Pro-
ceedings of the genetic and evolutionary computation con-
ference, 221–228.
Wang, W.; Bao, J.; Zhou, W.; Chen, D.; Chen, D.; Yuan,
L.; and Li, H. 2022. SinDiffusion: Learning a Diffu-
sion Model from a Single Natural Image. arXiv preprint
arXiv:2211.12445.
Wu, R.; and Zheng, C. 2022. Learning to Generate 3D
Shapes from a Single Example. ACM Transactions on
Graphics (TOG), 41(6): 1–19.

