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ABSTRACT
The infrastructure for multimedia content delivery has been
using more and more edge infrastructure (e.g., base stations,
smart routers, etc.), which not only alleviates the centralized
servers but also improves the quality of service by letting
users access content nearby. Algorithms based on deep rein-
forcement learning (DRL) have been widely adopted by such
edge cache replacement strategies due to their capability to
adapt to changing request patterns. However, a DRL cache
replacement agent learns extremely slow at an edge cache be-
cause of the sparse requests. In this paper, we propose a pop-
ularity distillation framework that allows edge caches to refer
to content replication strategies of other edge caches. First,
we design a collaborative edge cache framework that lets edge
caches learn their strategies by handling the local requests us-
ing deep reinforcement learning and learn from others by ex-
changing the “soft” popularity distributions experienced by
different edge caches. Second, we design a neighbor mainte-
nance mechanism in which an agent iteratively selects only a
small number of neighboring edge caches to perform the col-
laboration. Experiments driven by a real-world mobile video
dataset show that our design can improve the cache hit rate
by 3.0% compared with a non-popularity distillation baseline
with only a small overhead of transmission data during distil-
lation.

Index Terms— Edge caching; Joint strategy; Deep rein-
forcement learning; Knowledge distillation;

1. INTRODUCTION

With the adoption of edge-network technologies (e.g.,
5G), content delivery infrastructure is undergoing an enor-
mous change from conventional centralized to edge-based
paradigm. By letting users download content from nearby
caching points (e.g., base stations), edge content delivery sig-
nificantly alleviates the network backbone’s load. Due to both
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the cost-benefit and reduction of access latency, today, more
and more CDN providers are using edge caches to satisfy the
ever-increasing content volume. By 2021, low-latency real-
time communications and high-definition video applications
will leverage the multi-access edge enabled by 5G and Wi-Fi
6 and a half of all workloads will run outside the data cen-
ter, either in cloud/non-cloud data centers or at the network
edge [1]. Content replication, i.e., assigning content to differ-
ent edge cache nodes with only limited storage and bandwidth
capacities, is the key for edge content delivery to provide good
quality of service for users.

Conventional solutions cannot sufficiently handle edge
content replication. On the one hand, traditional “passive”
cache replacement strategies, including classic LRU and
LFU, whose effectiveness is based on the assumption of sta-
bility of user requests and popularity patterns [2], cannot per-
form well because of the dramatic change of the local popu-
larity at the edge node, as illustrated in Fig. 1a. A more fun-
damental explanation is an edge cache only aware of its local
requests does not have enough information to generate a repli-
cation strategy adaptive enough for future requests, especially
when the local content request patterns are highly violating.

On the other hand, a centralized mechanism, which gen-
erates content replication strategies with content request in-
formation collected from all the edge caches, is more capable
to “predict” future requests, but yet unacceptable due to the
significant network cost and strategy deployment delay, as il-
lustrated in Fig. 1b.

To tackle these problems, we propose collaborative edge
content replication based on a popularity distillation ap-
proach, as illustrated in Fig. 1c. “Popularity Distillation” is
our proposed design based on knowledge distillation [3], to
enable edge cache nodes to exchange their own “understand”
of local popularity patterns.

Basically, an edge node collects its local request records,
generates the content replication strategy through a deep re-
inforcement learning framework to catch up with content re-
quest patterns. To overcome the limitation of the data scarcity
at some edge nodes, we design a knowledge distillation ap-
proach to let neighboring edge nodes exchange “soft losses”
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Fig. 1: Three different edge content replication solutions. (a) Pure local solution: each edge cache node generates its own
strategy based on local requests; (b) Centralized solution: edge cache nodes report request records to a centralized coordinator
that generate replication strategies for all edge nodes; (c) Our popularity distillation solution: edge cache node generate the
content replication strategy based on both local requests and soft popularity distributions from neighbors.

of the popularity distributions and decide reference weights of
other nodes by another DRL agent. The “dual” DRL frame-
work allows an edge cache node to communicate with only a
small number of edge cache nodes to achieve near centralized
performance.

Our contributions can be summarized as follows.
1. We propose collaborative edge content replication that

lets edge caches learn their strategies by handling their lo-
cal requests and learns from others by exchanging the “soft
losses”. Besides, by adapting the reference weights of neigh-
boring edge caches, an edge cache node can achieve near cen-
tralized performance by communicating only a small number
of neighboring nodes.

2. To enable distillation among edge caches with diverse
capacities, we design a listwise DRL cache replacement al-
gorithm and unify the architecture of the deep model by de-
coupling the dimension of both the state space and the ac-
tion space from cache capacity. Besides, with fewer parame-
ters, the deep model learns faster and adapts to environmental
changes more quickly.

3. We use experiments driven by a real-world mobile
video dataset to show the effectiveness of our design. Our
design can improve the cache hit rate by 3.0% with only 2KB
overhead of information reference during distillation.

The rest of the paper is organized as follows. In Sec. 2 we
review the related studies. In Sec. 3 we analyze the problem
and present our detailed design of listwise DRL replacement
cache. In Sec. 4 we introduce our collaborative framework of
edge caches. In Sec. 5 we evaluate our design using trace-
driven experiments, and we conclude the paper in Sec. 6.

2. RELATED WORKS

2.1. Content Replication

Content replication is a critical area paid much atten-
tion to by both industry and academia. The content repli-
cation strategy highly depends on the content popularity of
user request patterns, which includes three types [4]: i) fi-
nite request sequences; ii) stationary request sequences; and

iii) non-stationary request sequences. Conventional passive
cache replacement strategies, including LRU and LFU, can-
not solve the third type of request sequences well due to the
non-stationary characteristics. To learn the dynamics of con-
tent popularity, the reinforcement learning(RL) method has
been introduced to cache problems. The RL-based strategy
can learn user patterns implicitly and have a significant im-
provement in cache utilization.

2.2. Deep Reinforcement Learning Cache

The past few years observe the notable progress of deep
reinforcement learning(DRL). In the area of network and
communication, DRL has been used as a tool to address var-
ious problems (e.g., [5, 6]). By defining a reasonable reward
as the goal, many model-free DRL algorithms can be applied
to solve cache problems.

However, the high dimension of the state space and the
action space in the cache replacement problem leads to large
neural networks, making models hard to converge. To tackle
this challenge, Zhong et al. [7] proposed a DRL-based online
cache replacement policy to reduce the action space. How-
ever, the reduction of the action dimension has a limited ef-
fect on reducing the size of the neural network because the
state space is still proportional to the cache capacity. To solve
this problem, we propose a listwise DRL cache replacement
policy, whose neural network is irrelevant to capacity, signif-
icantly reducing its model size.

2.3. Collaboration in Edge Cache

Enabling edge cache collaboration is a critical practice
to improve content replication performance. Wang et al. [8]
propose ‘MacoCache’, a multi-agent DRL-based algorithm to
minimize both content access latency and traffic cost by let-
ting edge learns its policy in conjunction with other edges.
In our scenario, we proposed a dual-RL architecture that in-
corporates knowledge distillation [3] for edge-network cache
collaboration, one for cache replacement, and one for collab-
oration.



Table 1: Notations

Symbol Definition
C Cache capacity
sit, a

i
t, r

i
t State/action/reward of i-th cache unit

lj , F Time slide window and number of them
M Replay memory in DRL agent
Vθ(·) Popularity value function
dk, N Edge cache k and number of edge caches
θk Parameters of cache model in dk
φi,j Reference weights of di to dj
Bk Mini-batch of soft samples from dk

... ......

Popularity Network
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Policy
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Fig. 2: LWDRL Replacement Cache Policy.

3. LISTWISE DRL-BASED REPLACEMENT CACHE

In this section, we will explain how a single edge cache
node performs cache replacement through a listwise deep re-
inforcement learning (LWDRL) approach.

The cache replacement problem can be formulated as an
MDP because the cache hit rate constitutes the natural reward.
Thus, many model-free DRL algorithms can be applied to
solve it. However, the state space dimensions are proportional
to cache capacity C. As a result, the deep model’s architec-
ture is also related to C, which leads to large neural networks
and hinders knowledge distillation among different edge de-
vices for the unified model architectures.

Actually, the order of elements in the cache will not af-
fect the cache’s functions. However, cache units’ states are
arranged according to their storage order and constitute the
cache state. Different arrangement orders lead to redundant
cache states, making it hard for DRL models to learn.

To tackle this problem, we propose LWDRL replacement
cache, as illustrated in Fig. 2, where the replacement in each
cache unit is considered an MDP as presented in 3.1. Then,
the state space dimension will be reduced from C × F to F ,
no longer relevant to C. In this way, the architecture of DRL
models in edge caches are unified, laying a good foundation
for knowledge distillation. Besides, the parameters of DNN
are significantly reduced, and the deep model will converge
more quickly.

3.1. MDP Formulation

To model cache replacement as an MDP, we need to de-
sign the state, the action, and the reward:

State design. The cache state st consists of a list of sub-
states (s1

t , s
2
t , ..., s

C
t ), where sit is the state of the i-th cache

unit. Each cache unit state has F elements, which means the
frequencies of content in different periods in the past.

Action design. When ‘miss’ happens, the cache need to
select which content stored in it to be evicted. The action is
at ∈ {1, · · · , C}, and it can be represented in a one-hot form:
at = (a1

t , a
2
t , ..., a

C
t ), s.t.

∑C
i=1 a

i
t = 1 where ait ∈ {0, 1} is

the action of each cache unit.
Reward design. To maximize the cache hit rate, we use

the number of ‘hits’ between two adjacent cache misses as the
reward rt. By counting the hits of each cache unit separately,
we can get the rewards of all cache units rt = (r1

t , r
2
t , ..., r

C
t ).

Actually, each cache unit does replacement as an MDP,
and we can train a model on the cache unit level.

3.2. Detailed Design

When requests arrive, the edge device handles them one
by one. Whenever the content requested ‘misses’ in the edge
cache, the cache agent must evict one content from the cache
to spare storage space for new content. Sequences of ‘cache
misses’ and replacement decisions take in turn, making up an
agent-environment interaction loop.

Every time DRL agent makes decision, it takes two steps:
(a) Action step: agent interacts with the environment and col-
lects experiences. (b) Training Step: agent trains itself with
experience in its replay memory. How the DRL agent does
cache replacement is presented in Algo. 1, and we will ex-
plain it in detail next.

3.2.1. Action Step

Upon any ‘cache miss’ event, the agent observes state
from environment and then estimates state values of all cache
units and choose the content with smallest state value to evict,
as is shown in Fig. 2. The policy is:

πθ(at|st) = arg min
i∈A

(Vθ(s
i
t)), (1)

where Vθ(·) is the popularity network.
After the environment taking the action, the agent observe

new state st+1 and reward rt. For each agent-environment
loop, the agent collects a transition (st, at, rt, st+1) and saves
it in its replay memoryM.

3.2.2. Training Step

Then, the agent samples a mini-batch of transitions B =
{(s, a, r, s′)} from its replay memoryM and trains with them
by minimizing MSE loss:

L(B|θ) :=
1

‖B‖
∑

(s,a,r,s′)∈B

C∑
i=1

[
Vθ(s

i)− yi
]2

θ ← θ − α∇θL(θ), θ̄ ← λθ + (1− λ)θ̄

(2)

where yi := ri + γVθ̄(s
′i) is the target state value.



By learning the optimal state value function via value it-
eration, we can get the optimal policy.

Algorithm 1 List-wise DRL-based Cache Replacement

1: θ ∼ some initialization distributions, θ̄ ← θ,M← ∅
2: Observe initial state st
3: for t = 1, 2, ..., K do
4: Select action at := arg min

i∈A
(Vθ(s

i
t)).

5: Execute action at in cache environment and observe
reward rt and new state st+1.

6: Store transitionM←M∪ {(st, at, rt, st+1)}
7: if t mod Tu == 0 then
8: Sample transitions B := {(s, a, r, s′)} ∼ M
9: Update popularity network according to Eq. 2.

10: end if
11: if t mod Td == 0 then
12: Execute popularity distillation in Algo. 2.
13: end if
14: end for

4. COLLABORATION BY
POPULARITY DISTILLATION

In this section, we will describe the details of the popular-
ity distillation, as is illustrated in Algo. 2. The collaboration
process through popularity distillation consists of two stages:
(a) generating distillation samples; (b) exchanging samples
and training.

4.1. Distilling Popularity Samples

In this stage, firstly, the DRL agent samples transitions
from its replay memory Tk = {(s, a, r, s′)} ∼ M. In each
transition, the difference between two adjacent states is the
cache unit to be replaced, which can be located by the action,
as is shown in Fig. 3b. Then we can distill samples:

Bk = {(sa, Vθk(sa)), (s, a) ∼ Tk} (3)

4.2. Learning by Popularity Distillation

When distillation samples prepared, each agent first se-
lects η edge caches Nk randomly and pulls samples from
them Xk = {Bj , j ∈ Nk}. Then agent trains itself with these
samples by minimizing the weighted sum of MSE losses:

LPD(Xk|θk, φk) =
1

η

∑
Bj∈Xk

wjkL(Bj |θk)

L(Bj |θk) =
1

‖Bj‖
∑

x,y∼Bj

[Vθk(x)− y]2
(4)

where wjk = eφ
j
k∑

i e
φi
k

is the reference weight and L(Bj |θk) is

the loss value of the samples from dj in the model of dk.

4.3. Adaptive Reference Weights

Since the environments in the edge network are diverse
and changing dynamically, an edge cache should not refer to

Algorithm 2 Popularity Distillation in dk with {θk, φk, ψk}
1: Generate PD samples Bk according to Sec. 4.1.
2: Randomly select η neighbors Nk and pull PD samples

from them: Xk = {Bj , j ∈ Nk}.
3: Caculate losses of these samples in replacement model in
dk as the state: st = {L(Bj |θk), j ∈ Nk}.

4: Mixing the losses above through the policy of reference
agent: at ∼ µφk(at|st) = LPD(X k|θk, φk).

5: Execute action at in environment (update replacement
model) and observe reward rt and new state st+1:
θk← θk −α∇θkLPD(X k|θk, φk)

6: Store transiton:M←M∪ {(st, at, rt, st+1)}
7: Sample transitions {(s, a, r, s′)} from replay memoryM

and update the critic according to Eq. 6, and update the
actor according to Eq. 7.

others equally and statically. Thus, we use another DRL agent
to decide the weights refer to others. Basically, an edge device
maintains a set of reference weights to other devices. Every
time taking popularity distillation, it will update both its agent
parameters and its reference weights.

First, we define the process of mixing losses of samples
from other edge devices as a decision-making process and op-
timize the reference weights through DDPG [9], which con-
sists of an actor and a critic. The actor acts as follows:

µφk(a|s) = LPD(Xk|θk, φk) =
1

η

∑
j∈Nk

wjkL
j
t , (5)

where the state s = {Lj , j ∈ Nk} is made up of the losses of
samples from other edge devices. Every time agent interacts
with the environment, it collects experience and saves it as a
transition to its replay memory. Periodically agent samples a
mini-batch of transitions and updates both the critic and the
actor with them. The DRL agent updates the critic as follows:

J(ψk) = E(s,a,r,s′)∼M[r + γQψk(s′, µφk(s′))

−Qψk(s, a)]2

ψk ← ψk − α∇ψkJ(ψk)

(6)

And then update the actor by policy gradient:

∇φkJ(φk) = −Qψk(s, µφk(s))∇φkµφk(s))

= −Qψk(s, µφk(s))(
1

η

∑
j∈Nk

wjk(1− wjk)Lj∇φkφk)

φk ← φk − α∇φkJ(φk)

(7)

By updating the critic and the actor in turn, an edge node can
learn the proper reference weights (policy) to other nodes.

5. EVALUATION

5.1. Dataset

The real-world dataset we used is from iQiYi company,
one of China’s largest video service providers. This dataset
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Fig. 4: Hit rate of different algorithms in single edge cache.

includes about 53 million content requests in Beijing for two
weeks, and each request consists of user ID, timestamp, loca-
tion, and content name. In our experiments, we choose sev-
eral points of interest (PoIs) and filter the requests in them for
training and testing. To simulate the sparsity of requests on
different edge caches, we randomly discard a portion of the
requests according to the sparsity ratio ρ.

To evaluate algorithms’ performance under IRM, we gen-
erate datasets where the content popularities subject to Zipf
distributions. In the static Zipf dataset, the content populari-
ties are stationary. For the dynamic Zipf dataset, the content
popularities are changing periodically by permuting the con-
tent ranks. To avoid dramatic changes between two adjacent
periods, we limit rank shifts to no more than 10.

5.2. Experiment Setup

notation value notation value

γ 0.99 η 3
Tu 2 Td 100
α 0.0003 ρ 0.2

Table 2: Experiment parameter settings
The baselines include traditional cache replacement algo-

rithms like LRU, LFU, ARC [10].
For deep learning methods, the features we used are the

content frequencies in different periods in the past. The
lengths of time windows for counting frequencies are 10 sec-
onds, 1 minute, 5 minutes, 30 minutes, 1 hour, one day, two
days, and one week.

In every distillation period (10 second), the overhead of
distillation is 2 × (F + 1) × ‖B‖ × η, and when batch size
‖B‖=32, F=8, η=4, the overhead is about 1.73KB. The other
parameter settings are listed in Tab. 2.

To utilize the cache, we use the cache hit rate as the met-
rics for evaluation. In evaluation, all algorithms make deci-
sions and learning online. In other words, they will only go
through the dataset once instead of repeatedly learning and
fitting on the same dataset.

5.3. Performance Evaluation

5.3.1. Evaluation in Single Cache

Fig. 4a shows the results in the static zipf dataset, where
the content popularities are stationary. In this situation, LFU
is considered optimal. Compared with LFU, our algorithm
can catch the content popularities quickly and achieve near-
optimal results (99.3% of LFU).

Fig. 4b shows the results in the dynamic zipf dataset,
where content popularities are non-stationary and changing
as time passes by. As a result, LFU performs poorly. In con-
trast, LRU and ARC can handle this situation well because
they will not be influenced by history a long time ago while
ARC can balance the weights of different periods, so it out-
performs LRU. In DRL-based algorithms, the agent can also
learn the weights of different periods of the past, so it works
as well as ARU.

Fig. 4c shows the results of algorithms in the iQiYi
dataset, where the dynamics of content popularities are more
complex than two Zipf datasets. In this situation, our algo-
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rithm performs best than others and has at most 22.8% im-
provement compared with ARC.

5.3.2. Evaluation in Multi-cache Environment

In the multi-cache environment, when capacity is unified,
as presented in Fig. 5a, the popularity distillation contributes
to improving the hit rate by 3.0% on average. Fig. 5b shows
the result of edge caches with different capacities. Popularity
distillation works in edge caches with diverse capacities and
has improved cache hit rate by about 1.6% on average. The
effectiveness of distillation decreases as capability increases.

For LWDRL cache, it learns the content popularities with
dynamic experience in the transition from one cache unit state
to another, and this transition occurs only when cache replace-
ment happens. The ‘dynamic border’ between two sub-states
is related to cache capacity. Thus, the dynamic experience
from the large cache can improve popularity evaluation ac-
curacy in the small one. In contrast, the dynamic experi-
ence from the small one has slight improvement for the large
one because of the ‘border’ of dynamic of small cache often
within that large cache. Thus, adaptive weight reference al-
lows nodes to update the reference weights to avoid biased
samples from interfering with learning.

Fig. 5c shows the influence of the number of reference
nodes. As shown in the figure, the hit rate increases as η
increases initially and has little improvement when η > 3.
In our experiments, we use η = 3 for training and testing.

6. CONCLUSION AND FUTURE WORK

In conclusion, we first design a listwise DRL-based re-
placement cache that decouples the deep model from cache
capacity and keeps models unified in all edge caches. Then,
we design a popularity distillation mechanism letting edge
nodes refer others by exchanging distillation samples and
learns the reference weights of neighboring edge caches. Our
experiments show that with popularity distillation, an edge
cache node can achieve near centralized performance by com-
municating with only a small number of neighboring nodes.
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