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Abstract—Elastic Content Delivery Networks (Elastic CDNs)
have been introduced to support explosive Internet traffic growth
by providing small Content Providers (CPs) with just-in-time
services. Due to the diverse requirements of small CPs, they
need customized adaptive caching modules to help them adjust
the cached contents to maximize their long-term utility. The
traditional adaptive caching module is usually a built-in service
in a cloud CDN. They adaptively change cache contents using
size-scaling-only methods or strategy-adaptation-only methods.
A natural question is: can we jointly optimize size and strategy
to achieve tradeoff and better performance for small CPs when
renting services from elastic CDNs? The problem is challenging
because the two decision variables could involve both discrete and
categorical variables, where discrete variables have an intrinsic
order while categorical variables do not. In this paper, we propose
a distribution-guided reinforcement learning framework JEANA
to learn the joint cache size scaling and strategy adaptation
policy. We design a distribution-guided regularizer to keep the
intrinsic order of discrete variables. More importantly, we prove
that our algorithm has a theoretical guarantee of performance
improvement. Trace-driven experimental results demonstrate our
method can improve the hit ratio while reducing the rental cost.

Index Terms—elastic content delivery networks, caching, deep
reinforcement learning.

I. INTRODUCTION

Recent years have witnessed a rapid rise of small con-
tent providers: many vertical video-sharing platforms have to
operate their video streaming due to their unique interactive
requirements (e.g., online education platforms need to incor-
porate quiz in video streaming) that cannot be well handled
by traditional large video sharing platforms (e.g., YouTube).
Such small content providers can attract a large number of
users and drive significant internet traffic (e.g., Coursera had
over 30 million users worldwide by the end of 2018).

Comparing with traditional large content providers that
maintain their self-built CDNs, small content providers tend to
lease resources from the emerging elastic CDNs (e.g., Akamai
Aura [1] and Huawei uCDN [2]), for their content delivery.
Unlike the Cloud CDN, which has a built-in adaptive cache
module that automatically scales the rental cache size for
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tenants, elastic CDN [1] provides tenants API to determine
what contents to cache. This gives tenants a customized choice
to employ their own model and parameters. This application
raises a problem: how to maximize utility for small content
providers in elastic CDNs through adaptive caching?
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Fig. 1: Comparison between previous studies on adaptive
caching and our joint adaptive caching solution.

Existing adaptive caching solutions usually attach to service
providers (e.g., self-built CDN or cloud CDN). These solutions
can be categorized into two groups: adaptively scaling the
cache size (size only) [3]–[5], or adaptively adjusting the cache
replacement strategy (strategy only) [6]–[8]. A strategy-only
method can lead to higher hit rates but can introduce higher
strategy switching overhead costs. Replacing old contents with
new ones will cause costs due to data migration. Different
strategies usually prioritize different contents. When switching
to a new strategy, we may need to replace a set of contents
at once and have a high switching overhead cost. Although
a size-only method does not bring switching costs, it is



not able to adapt to content popularity changes, and thus
can not guarantee a high cache hit rate. Therefore, when
designing adaptive caching policy for small content providers,
a natural question is: can we jointly scale size and adjust
replacement strategy? A joint solution is capable of trading
off between cache hit rate and strategy switching costs to
maximize tenants’ benefits.

We now need to solve this joint adaptive caching problem
which has a huge search space and no prior knowledge on
future content popularities. In recent years, deep reinforcement
learning (DRL), which learns a policy via interacting with the
environment, has achieved great success in various kinds of
applications. Recently, there are some works that use DRL
to make content replacement strategy. They are all single-
action frameworks focusing on cache admission or prefetch
and usually assume the arrival process as an i.i.d. model [9].
[10] used DQN to achieve caching strategy adaption. Although
DQN is able to deal with large continuous state space, it suffers
from low convergence when dealing with multi-dimension
action space. [11] added Wolpertinger to DDPG to deal with
large binary action space. But in our problem, our actions are
discrete variables or categorical variables, or both. Existing
off-the-shelf DRL algorithms treat discrete and categorical
cases equally as classification tasks, ignoring an important
fact that discrete variables have intrinsic order. Thus, directly
applying DRL algorithms will cause performance degradation.
(Details are given in Sec. III-C)

The main contributions of this paper are as follows:
• To simultaneously optimize both categorical and discrete

variables in joint adaptive caching problem, we propose
a novel RL algorithm JEANA to learn a joint policy. It
utilizes a distribution-guided regularizer based on Wasser-
stein distance to constrain the action distribution to be
smoother and capture intrinsic order among discrete vari-
ables, which improves model representation and capacity.

• We prove that our algorithm has theoretical guarantee of
monotonic performance improvement by maximizing a
lower bound of expected reward at each iteration.

• We evaluate JEANA on real video-on-demand content
request traces. Experimental results show: 1) the supe-
riority of joint caching decision over strategy-only and
size-only methods in terms of cache hit rate and rental
cost; 2) the stability and performance improvement of
our training process; 3) the effectiveness of distribution-
guided regularizer in reducing performance loss.

The remainder of this paper is organized as follows. The
system model and problem definition are introduced in Sec.
II. Our proposed JEANA framework is presented in Sec. III.
Sec. IV discusses the experiment results. We review the related
work in Sec. V and conclude the paper in Sec. VI.

II. SYSTEM MODEL

In this section, we first present the workflow of JEANA.
It shows how JEANA works in the elastic CDNs. Then we
elaborate on the system model and give our problem definition.
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Fig. 2: The workflow of JEANA. The light blue block repre-
sents the JEANA module that locates at the CP side.

A. Workflow

As shown in Fig. 2, when receiving a user request, the CP
checks whether the content is cached in the elastic cache of the
SP. If yes, the request will be served directly through the cache;
otherwise, it will be directed to the original server. These
processes are represented by black circles. At the same time,
the user request will also be input to JEANA. JEANA outputs
the joint action, namely the cache size scaling variable and
strategy adaptation variable. According to these two variables,
we derive the indices of contents that currently need to be
cached. Then the original server pushes these contents to the
elastic cache. SP charges the current cache lease according to
its own pricing mechanism. SP will send the cost and current
cache status info as feedback to JEANA. These processes are
represented by gray circles. In summary, JEANA learns and
updates policy based on user requests and SP feedbacks.

B. Use Cases

We define categorical control and discrete control to illus-
trate that the two decision variables may be different types.

Use case 1 (categorical control case): A small CP CA
provides video service for its users. CA needs to rent elastic
CDNs service from SP SB . The contents of CA are equal-size
chunks, whose size equal to cache unit size of SB . At every
decision round t ∈ {0, 1, 2, · · · , T − 1}, CA needs to decide
how many cache units to rent from SB and what contents
to cache. CA selects one of the three cache replacement
strategies of LRU, LFU, and Random, represented by a2t ,
to rank contents, and select the top a1t items to cache. The
size scaling variable a1t is a discrete variable, and there is
intrinsic order between the values. Strategy adaptation variable
a2t represents a categorical variable, and there is no intrinsic
order between the values.

Use case 2 (discrete control case): The contents of CA
are equal-size chunks, whose size equal to cache unit size
of SB . CA needs to decide how many cache units to rent
from SB and what contents to cache. The cache replacement
strategy adopted by CA is a modified ALRFU [6], which
can shift the cache strategy combining frequency and recency



through a parameter δt ∈ {0, 0.1, 0.2, · · · , 1}. This dynamic
scoring mechanism considers the size, frequency, and recency.
So at every decision round t, CA selects a value a2t from
the parameter set, uses the corresponding strategy to rank the
contents by their scores, and select top a1t items to cache. The
size scaling variable a1t and strategy adaptation variable a2t are
both discrete variables, they both have intrinsic order.

C. Problem Definition of Joint Elastic Caching

In this paper, we consider the following scenario: a small
CP owns a library of equal-sized contents f ∈ {1, 2, · · · , F}.
This small content provider needs to rent caches from a third-
party SP to deliver its contents effectively. The SP provides
paid elastic caching service, and it provides tenants API to
determine what contents to cache. The CP can determine what
contents to cache by jointly scaling cache size and adjusting
replacement strategy in a slotted fashion during a finite horizon
T . We denote the cache size scaling decision at time t as a1t ,
and cache replacement strategy adaptation decision at time t
as a2t . The joint decision at time t is denoted as at = [a1t , a

2
t ].

SP charges CP for renting caches every timeslot. Note that the
dynamic cache leasing price is agnostic to decision maker.

For small CPs, they aim to maximize the gains from cache
hits while minimizing the rental cost over a given time horizon.
We use a common form of utility function to define their goal:

U =

T−1∑
t=0

(gt − dt) =
T−1∑
t=0

(λht − dt) (1)

The utility comes from the gain gt of serving content
requests by cache minus the rental cost dt on leasing cache
storage, i.e., gt − dt. When requested content is found in the
SP’s cache, and this is referred to as a “cache hit”. When
requested content is not found in the cache and must be fetched
from a remote CP’s original server, this is referred to as a
“cache miss” and will result in high latency. Obviously, every
cache hit brings gain. We denote λ as per cache hit gain. At
each timeslot, the total hits is denoted as ht, and total cache
hit gain is denoted as gt = λht. Rental cost at each timeslot is
denoted as dt. Thus, utility ut = gt−dt = λht−dt. dt and ht
are directly related to which contents are cached. That is, dt
and ht are determined by joint caching action at = [a1t , a

2
t ].

Table I summarizes notations used in this paper.
Our goal is to find the policy π∗ that maximizes the CP’s

utility over time horizon T . The mathematical expression of
the joint adaptive caching problem is as follows:

π∗ =argmax
a1,a2

U. (2)

III. JEANA FRAMEWORK

In this section, we first depict the overall framework of
JEANA followed by detailed descriptions and analysis of each
block: i) MDP definition for DRL, ii) an actor-critic network
for generating joint action, and iii) loss function. To reduce the
performance loss when dealing with different types of action
variables, we design a Wasserstein distance based regularizer

TABLE I: Notation Definition

Parameter Definition
F the number of contents owned by CP
T time horizon
λ revenue per cache hit
kt long-term content scores at time t
zt short-term content scores at time t
vt cache status information at time t
ht number of cache hits at time t
gt cache hits gain at time t
dt cost of leasing cache from SP at time t
rt utility/reward of time t, rt = gt − ht
δt parameter combines recency and frequency
xft request number of content f at time t
U utility function of joint caching desicion
Rt requests vectors received by CP at time t

Variable Definition
a1t cache leasing size at time decison
a2t cache replacement strategy decision
at joint caching decision, at = [a1t , a

2
t ]

πi sub-policy of action ai, i ∈ {1, 2}
π policy generates the joint action a

to preserve intrinsic order between discrete variables. This
regularizer improves model representation and capacity of
neural networks. Then we derive a new objective function.
Next, we summarize the whole algorithm. Last, we prove
that our algorithm has theoretical guarantee of monotonic
performance improvement based on the top of TRPO [13].

A. MDP Tuple

A finite-horizon Markov Decision Process (MDP) is defined
by a tuple (S,A,P , r, γ), where S is a finite set of states, A
is a finite set of actions, P : S ×A×S → R is the transition
probability distribution, r : S → R is the reward function, and
γ ∈ (0, 1) is the discount factor.

First, let us define state, action, and reward for our problem.
In our setting, state transition occurs upon every timeslot.

State st consists of three parts: long-term information kt,
short-term information zt and cache status information vt.
Thus, st = {kt, zt,vt}. kt is the score vector that contains
score values for each content at time t. It is determined by the
replacement strategy we choose and the corresponding scoring
mechanism. In discrete control case, kt = δtkt−1+xt. A con-
trol parameter δt is used to make a tradeoff between recency
and frequency. In this way, we are able to take advantage of
both LRU and LFU [6]. By modifying δt, we can adapt to
non-stationary traffic conditions, i.e., when the popularity of
content evolves with time. xt stands for a request vector that
records the number of requests for each content at time t. δt
is adaptively determined by the replacement strategy adaption
action variable a2. If δt ≡ 1 for all t ∈ {0, 1, 2, · · · , T − 1},
kt =

∑t
i=0 xi and it degenerates to the frequency count; so the

replacement will simply become the LFU strategy. Similarly,
if δt ≡ 0 for all t ∈ {0, 1, 2, · · · , T − 1}, kt = xt, and it
degenerates to the recency count. Short-term information zt
records content request vectors of the past d timeslots. We de-
note zt = {xt,xt−1, · · · ,xt−d−1}. Cache status information
vt records how many consecutive timeslots the current cached
contents have been stored, that is, vt = {v0t , v1t , · · · , v

a1t−1

t }.
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and the critic network outputs state value V (st). If action a∗t belongs to discrete action space A∗D, then we add a Wasserstein
distance term φ(π∗, π

′∗) into W (·); otherwise, a∗t belongs to categorical action space A∗C , and we add 0 into W (·). The right
part shows how joint caching decision at = [a1t , a

2
t ] determines what contents to cache, and how much reward rt it achieves.

Action at = [a1t , a
2
t ]. a

1
t is a scalar that indicates cache size

scaling variable, a2t is a scalar that indicates the replacement
strategy adaptation variable.

Reward rt. We define rt as utility. As described in Sec. II-C,
we define reward as rt = gt − dt = λht − dt. Thus, the total
utility of joint adaptive caching decision is U = R =

∑T
t=0 rt.

B. Actor-Critic Network and Joint Caching Decison

After defining the MDP tuple, we present our actor-critic
network design. We describe its input, output and architecture.

In an advantage actor-critic model [13], the actor network,
i.e., the policy network, learns a policy π : S×A → [0, 1], and
produces actions. The critic network, i.e., the value network,
estimates the state value V (s).

To learn a joint caching policy using an actor network
parameterized by θ, we can define the joint caching policy
πθ(a|s) as follows,

πθ(a|s) = π1
θ(a

1|s)π2
θ(a

2|s) =
∏
ai∈a1

π1
θ(a

i|s)
∏
aj∈a2

π2
θ(a

j |s).

(3)
In Sec. II-B we list different use cases, which involve two

different action spaces: categorical action space, and discrete
action space. Let us take Eq. (3) a further step by discussing
these cases separately. Since cache size scaling is always a
discrete control, we further denote it as π1D

θ (a1D|s) with D
representing discrete action space. Though cache replacement
strategy adaption has both categorical control case and discrete
control case, it can be similarly further divided into two
sub-sets: i) π2C

θ (a2C |s) with C representing categorical action
space; ii) π2D

θ (a2D|s) with D representing discrete action
space.

For categorical control, we represent the categorical policy
πC as a categorical distribution over K different choices
parameterized by state-dependent probabilities:

πCθ (a
2C |s) = Categorical(αik,θ(s)), ∀i, s

K∑
k=1

αik,θ(s) = 1,

(4)
And for discrete control, taking a1D as an example, we

represent the discrete policy πD as a discrete normal distri-
bution which is derived as a discrete analog of the Gaussian
distribution [14].

πDθ (a
1D|s) = Ndis(µi(s), σi(s), αik,θ(s))

∀i, s
K∑
k=1

αik,θ(s) = 1,
(5)

where θ is the parameters of an actor network that need to
be optimized. In particular, αiθ(s) represents as outputs of an
actor network. µi(s) and σi(s) are the mean and variance of
discrete normal distribution that varies with different state s.

C. Discrepancy Between Discrete and Categorical Control
Cases

In Fig. 4, we take examples to illustrate the differences
between these two control cases. In the left column, the upper
block shows a discrete case, where the content replacement
strategy decision a2 is δt. To achieve strategy adaptation, we
can tune δt from {0.2, 0.4, 0.6, 0.8}. These four values are
numerical variables and represented by four solid circles with
different colors. The below block shows a categorical control
case, where the strategy adaptation decision a2 also has four
values represented by four solid circles with different colors,
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corresponding to four different replacement strategies: {LFU,
LRU, GDSF, Random}.

However, the discrete case poses a challenge to existing
DRL algorithms, which tackle these two cases in the same
way: setting the final layer as a softmax layer with four
neurons, as shown in the middle column in Fig. 4. The softmax
layer is used to output multi-class probabilities and inherently
suitable for categorical control cases. Nevertheless, for discrete
control cases, without considering the intrinsic order between
discrete variables, simply using the softmax layer will cause
performance degradation. As shown in the last column in Fig.
4, the expected action distribution of the discrete case looks
like a normal distribution, which may be inconsistent with the
actual output of the softmax layer.

It is obvious that the output action distributions of categori-
cal control and discrete control are different. However, existing
DRL algorithms solve both of them as a classification problem
and set the last layer of actor network as a softmax layer.
That is, we face a challenge that existing DRL algorithms
treat them both as categorical control resulting in performance
degradation for discrete control cases.

D. Distribution-Guided Regularizer

To reduce the performance degradation and design a guided
distribution, we need to understand the characteristics of
discrete control cases in our problem, e.g., is it unimodal or
multimodal? Thus, we investigate how the utility varies with
different cache sizes and different strategies, using the same
trace with that of Sec. IV.

For the varying cache size C, at every timeslot t, we
compute content score with δt ≡ 0.9. Then we cache the
top C contents with the highest content scores and compute
the total utility. As shown in Fig. 5a, this total utility curve is
unimodal: it increases first and then descends with cache size
C. Note that the total utility does not increase monotonically
due to rental costs.

(a) Varying cache size C

parameter

(b) Varying δt

Fig. 5: (a) Total utility with varying cache capacity. Taking
the discrete control scenario as example, we fix δt ≡ 0.85 and
vary cache size C in range [0, 50] with an interval 1. (b) Total
utility with varying δt in range [0, 1] with interval 0.02. Note
that we fix cache size C as 20 for all {t|t = 0, 1, · · · , T − 1}.

For varying δt, we fix cache size C ≡ 20. At every timeslot
t, we compute content score. Then we cache the top C contents
with the highest content scores and compute the total utility.
As shown in Fig. 5b, this curve is also unimodal.

Based on these observations, we add a discriminator for
categorical control and discrete control cases. For discrete
control, we design a unimodal distribution-guided policy N̂dis,
and use a Wasserstein distance loss to constrain the action
probability distribution to be smoother, reducing performance
degradation for discrete control cases. When updating from an
old policy π to a new policy π′, we denote our distribution-
guided loss as W (π′),

W (π, π′) =

2∑
i=1

xiφ(πi, π′i), (6)

where,

φ(πi, π′i) = |h(π′i)− h(πi)|Dmax
W (Ndis(h(πi), σ), π′i), (7)

where xi is an indicator variable that output by the dis-
criminator: xi = 1 if ai belongs to discrete action space,
and xi = 0 if ai belongs to categorical action space.
h(πi) = argmaxai π

i(ai|s) represents the maximum value
of output action distribution generating by the old policy
π on state s. Dmax

W (Ndis(h(πi), σ), π′i) is the maximum
Wasserstein distance of the guided distribution Ndis(h(πi), σ)
and the new policy π′i over all states, which is Dmax

W (·) =
maxsDW (Ndis(h(πi), σ), π′i(·|s)). Here σ is a constant.

E. Optimizing the Objective Function

Our objective function Ii to optimize is as follows:

max
π′

Eτ∼π′
[
T−1∑
t=0

γtAπ(st,at)

]
−ζDmax

KL (π, π′)−βW (π, π′),

(8)
where advantage Aπ(st,at) means how much better it is to
take a specific action at compared to the average action at the
given state st. Advantage can be estimated by value network.
Policy update loss Dmax

KL (π, π′) is used to constrain on the
size of the policy update, thus to avoid destructively large
updates. W (π, π′) is a distribution-guided loss which is used



to preserve intrinsic order of discrete variables. ζ and β are
the coefficients of policy update loss and distribution-guided
loss, respectively. A detailed analysis of the objective will be
given in next subsection.

Next we will present our algorithm that maximizes our
objective Ii in each update step on our joint caching policy.
Specifically, given the old policy π, we select the new policy
π′ that maximizes Ii, leading to performance improvement.

According to importance sampling, when we need to
compute an expected return of an unknown distribution p
given distribution q, we can transform the expected return
of distribution p as Ex∼p[f(x)] = Ex∼q

[
f(x)p(x)q(x)

]
with a

constraint that distribution p and q should be close to each
other, otherwise the estimation will have a large variance. In
our problem, we can only sample data from distribution π,
then the first term in Eq. (8) can be approximated as

Eτ∼π′ [Aπ(st,at)]

=Eτ∼π
[
pπ′(st,at)

pπ(st,at)
Aπ(st,at)

]
=Eτ∼π

[
π′(at|st)
π(at|st)

ρπ′(st)

ρπ(st)
Aπ(st,at)

]
=Eτ∼π

[
π′(at|st)
π(at|st)

Aπ(st,at)

]
.

(9)

Note that the term ρπ′ (st)
ρπ(st)

can be assumed to be 1 by
ignoring changes in state visitation density [13]. Therefore, we
can derive the following equivalent objective, which samples
trajectory and data from old policy π to update new policy π′:

max
π′

Eτ∼π[Lori − βW (π, π′)].

Lori =

T−1∑
t=0

γt
π′(at|st)
π(at|st)

Aπ(st,at)− ζDmax
KL (π, π′)

(10)

F. Algorithm

We summarize JEANA in Algorithm 1.

G. Analysis on Performance Improvement Gurantee

After presenting the design of JEANA, we now provide
analysis to prove that: i) optimizing our objective Ii is equiv-
alent to maximizing long-term expected reward, i.e., utility
of small content providers; ii) by building a lower bound of
the expected reward, we can gurantee monotonic performance
improvement by maximizing the lower bound.

To maximize the expected long-term reward η during a finite
time horizon T , we define our goal as follows:

η(π) = Eτ∼π

[
T−1∑
t=0

γtrt

]
, (11)

The advantage can be estimated as

Aπ(s,a) = Es′∼P (s′|s,a)[r(s) + γVπ(s
′)− Vπ(s)], (12)

Algorithm 1: JEANA

1 Randomly initialize critic network V (·) and actor
network π(·) with parameters ω and θ, respectively;

2 Initialize learning rates αθ, αω;
3 Initialize batch B;
4 Receive initial observed state s0;
5 /**Decision Epoch**/
6 for t = 0, · · · , T-1 do
7 Sample at ∼ πθ(at|st);
8 Execute action at, observe reward rt and next state

st+1 ∼ P (st+1|st,at);
9 Store transition sample (st,at, rt, st+1) into B;

10 end
11 Sample trajectories from B;
12 Compute advantage A(st, at) based on current critic

network Vω using Eq. (12);
13 /**Distribution-Guided Loss**/
14 for i= 1, 2 do
15 Discriminate action spaces for joint action and set

indicator xi;
16 Compute h(πi) = argmaxai π

i
θ(a

i|s);
17 end
18 Compute distribution-guided loss W using Eq. (6);
19 /**Network Updating**/
20 Update θ by gradient ascent method w.r.t. Eq. (10);
21 Update ω by gradient descent method by regression on

mean-squared error: ω =
argminω

1
|B|T

∑
τ∈B

∑T−1
t=0 (Vω(st)−

∑
t′>t γ

t′−trt′).

Lemma 1: Expected long-term reward of a new policy π′

can be expressed in terms of the advantage function over an
old policy π.

η(π′) = η(π) + Eτ∼π′
[
T−1∑
t=0

γtAπ(st,at)

]
. (13)

The proof can be found in [13]. And it can be rewritten as

η(π′) = η(π) +

T−t∑
t=0

∑
s

p(st = s|π′)
∑
a

π′(a|s)γtAπ(s,a)

= η(π) +
∑
s

T−t∑
t=0

γtp(st = s|π′)
∑
a

π′(a|s)Aπ(s,a)

= η(π) +
∑
s

ρπ′(s)
∑
a

π′(a|s)Aπ(s,a),

(14)
where ρπ(s) is the discounted state visitation probability. η(π′)
is not easy to be directly optimized since there exists ρπ′ ,
which contains π′ that is unknown.

To solve this, we first make an approximation of η(π′). We
substitute ρπ for ρπ′ by ignoring changes in state visitation
density when policy updates from π to π′, which yields,

Lπ(π
′) = η(π) +

∑
s

ρπ(s)
∑
a

π′(a|s)Aπ(s,a). (15)



According to [15], a sufficiently small step π → π′ that
improves Lπ will also improve η. Here comes a question: how
to measure the policy update step? Thus, we need a distance
measure between π and π′. We denote Dmax

KL (π||π′) as the
maximum Kullback-Leibler (KL) divergence of the old policy
and the new policy over all states, which is expressed as
Dmax
KL (π||π′) = maxsDKL(π(·|s)||π′(·|s)). And we denote

ε = maxs,a|Aπ(s,a)|. Given the notations above, we have the
following theorem on a performance lower bound, the proof
of which is presented in [13].

Theorem 1. The expected performance of a new policy is
bounded from below as follows:

η(π′) ≥ Lπ(π′)− ζDmax
KL (π, π′),

where ζ =
4εγ

(1− γ)2
.

(16)

From this theorem, we can derive the following corollary
that proves the performance improvement guarantee.

Corollary 1. A policy update can guarantee to generate
a monotonically improving sequence of policies η(π0) ≤
η(π1) ≤ η(π2) ≤ · · · ≤ η(πi) ≤ η(πi+1).
Proof. Let Ii(π) =Mi(π)−Wi(π), where Mi(π) = Lπi(π)−
ζDmax

KL (πi, π), and Wi(π) =
∑2
i=1 x

iφ(πi, π′i), then

Wi(πi+1) ≥ 0,

Wi(πi) = 0,

η(πi+1) ≥Mi(πi+1),

η(πi) =Mi(πi).

η(πi+1) ≥Mi(πi+1)−Wi(πi+1) = Ii(πi+1),

η(πi) =Mi(πi)−Wi(πi) = Ii(πi),

η(πi+1)− η(πi) ≥ Ii(πi+1)− Ii(πi).

(17)

By maximizing the lower bound Ii at each iteration, we
guarantee the true objective performance η is non-decreasing.
Therefore, Ii is an equivalent objective function.

IV. EVALUATION

We conduct experiments on real-world video traces to eval-
uate JEANA’s performances in different use cases, including
categorical control and discrete control. We validate 1) the
superiority of joint caching decision over strategy-only and
size-only methods; 2) the stability of our JEANA training
process; 3) the effectiveness of distribution-guided regularizer
in reducing performance degradation.

A. Setup

Trace-Driven Simulation Environment. We first build
a trace-driven environment to simulate the process of joint
adaptive caching in elastic CDNs. We use a video request
dataset, collected by a video content provider. Each request
records the following attributes: i) the device id; ii) the
timestamp; ii) the latitude and longitude coordinates of the
current request; iv) the title of the video. This video request
dataset covers 212, 235 requests to 33, 125 unique contents
during 13 days of May, 2015. We aggregate the request data
on an hourly basis to produce a content request trace. As

shown in Sec. II-A, CP continuously receives requests. At each
timeslot t, CP needs to determine which content replacement
strategy to choose and how many cache units to rent from SP.
We set the parameters of the SP’s pricing function according
to [16]. The SP charges CP for caching content j using a
cache-time decreasing price function p(vjt ) = aψv

j
t +b, where

a = 0.017, ψ = 0.999888, b = 0.01; vjt represents how many
consecutive timeslots that content j has been cached. Thus,
the rental cost is dt =

∑a1t
j=1 p(v

j
t ). The initial leased cache

unit cost for caching a new content is 0.027. The rationale
behind this is that the longer a content is cached, the lower
the unit cost it takes, which discourages frequent hard disk
writing and data transmission.

We split the 13-day data into training and test parts with a
ratio of 11:2. We build up a trace-driven training environment
and a test environment separately.

For other parameters, we set λ = 1.4676× 10−2 according
to [3], and set d = 48. d means the length of past request
information we consider. Note that we find d can range from
6 to 48, which does not affect the performance.

For categorical control case, A = [A1D,A2C ], we set the
dimension of action space as [100, 3], which means cache size
ranges from 0 to 99 with interval 1, and content replacement
strategy shifts among LFU , LRU and Random. For discrete
control case, A = [A1D,A2D], we set the dimension of action
space as [100, 101], which means cache size ranges from 0 to
99 with interval 1, and content replacement strategy parameter
δt ranges from 0 to 1 with interval 0.01.

Actor-Critic Network. The actor network for learning a
policy is a fully connected network (FCN) with four hidden
layers, using ReLU [17] as the activation function. The critic
network for value function estimation is a FCN with four
hidden layers as well, but its final output is a linear neuron
without activation function. The discount factor γ = 0.99. The
initial learning rate is 1.25 × 10−5, the minibatch number is
4, and the total timestep is 1.6× 105. For distribution-guided
regularizer, β = 10−4, σ = 1. Our experiments run over 12
Intel Xeon 2.2GHz CPUs and 4 Nvidia GTX 1080Ti GPUs.

Baselines. We use the following baselines:

• BestFixed: best fixed decison in hindsight. It is obtained
when we assume we know the future requests. [a1bs, a

2
bs]

represents the best fixed joint caching decision tuple,
where a1bs is the best value for cache size scaling, and
a2bs is the best value for replacement strategy.

• JEANA-a2: JEANA without replacement strategy adap-
tation. It is a size-only method which adjusts a1 only. It
fixes content replacement strategy variable with a2bs.

• JEANA-a1: JEANA without cache size scaling a1. It is a
strategy-only method which adjusts a2 only. It fixes cache
size scaling action with a1bs.

• JEANA-W : JEANA without distribution-guided loss. As
shown in Eq. (10), the objective function of JEANA-W
does not use the distribution loss W (π, π′).

Metrics. We use the following performance metrics:



• Hit gain: G =
∑T−1
t=0 λht. The higher hit gain means the

more requests served by elastic cache.
• Rental cost: D =

∑T−1
t=0 dt. The more cache units we

rent, the higher rental cost we spend.
• Total reward: R = G−D. The higher total reward means

a better adaptive cache rental decision.

B. Ablation Study

To understand the impact of each component in JEANA, we
conduct ablation studies to demonstrate: i) the superiority of
joint caching decision; ii) distribution-guided loss contributes
to the overall performance; iii) performance improvement
guarantee stabilizes the training process.

1) Superiority of joint caching decision: Table II shows
the metric statistics of JEANA and several baselines. Our
experimental results confirm some conclusions in Sec. I: 1)
Size-only adaptive caching methods have a relatively low hit
rate without strategy switching cost, therefore resulting in low
cache rental cost. 2) Strategy-only adaptive caching methods
have a high cache hit rate with high strategy switching cost,
therefore resulting in a high cache rental cost. Joint adaptive
caching can get the best overall performance. As shown in
Table II, size-only method JEANA-a2 achieves the lowest
hit gain no matter in Cat. or Dis. cases. JEANA always
achieves the highest hit gain, which is 25% and 23.3% higher
than size-only method JEANA-a2, and 3.5% and 7.3% higher
than strategy-only method JEANA-a1. The superiority of joint
caching over strategy-only comes from lower rental cost, with
3.83% and 1.0% lesser rental cost.

As for the total reward, in categorical control case and dis-
crete control case, JEANA outperforms BestFixed by 23.14%
and 22.73%, respectively; outperforms single cache size scal-
ing baseline JEANA-a2 by 13.57% and 13.26%, respectively;
outperforms single content replacement strategy adaptation
baseline JEANA-a1 by 16.84% and 21.53%, respectively.

TABLE II: Performance metrics of different methods for
categorical case (Cat.) and discrete case (Dis.).

Hit gain Rental cost Total reward
Methods Cat. Dis. Cat. Dis. Cat. Dis.

BestFixed 27.65 30.15 19.01 19.02 8.64 11.13
JEANA-a2 22.56 27.24 13.28 15.18 9.28 12.06
JEANA-a1 27.06 31.26 17.92 20.02 9.14 11.24
JEANA-W 27.67 33.3 17.29 20.08 10.38 13.22

JEANA 28.00 33.55 17.26 19.89 10.78 13.66

From the action sequence in the categorical control sce-
nario as shown in Fig. 7, the strategy-only method JEANA-
a1 switches the strategy a total of 7 times, while JEANA
only switches the strategy 3 times in total. Size-only method
JEANA-a1 scales the size only 5 times while JEANA scales
size 11 times in total. JEANA achieves the best total reward
performance while saving the cost of strategy switching and
get the highest hit rate. Besides, there is time consistency
between strategy switching and size scaling.

JEANA (Dis.)
JEANA-𝑊 (Dis.)
JEANA-𝑊 (Cat.)
JEANA-𝑎# (Cat.)

JEANA-𝑎$ (Cat.)

Fig. 6: Training process and episode reward of JEANA-a1,
JEANA-a2, JEANA-W and JEANA.

JEANA-𝑎" JEANA-𝑎#JEANA

Strategy switch points

Fig. 7: Actions generated by JEANA, JEANA-a2 and JEANA-
a1 on 2-day test data when A = [A1D,A2C ].

JEANA-𝑊 JEANA

Strategy switch points

Fig. 8: Actions generated by JEANA-W and JEANA on 2-day
test data when A = [A1D,A2D].

2) Distribution-guided loss contributes to performance:
we evaluate the performance improvement contributed by
distribution-guided loss W . Therefore, we compare JEANA
over baseline JEANA-W .

The performance comparison of them is given in the last



two rows in Table II. JEANA outperforms JEANA-W in
both cases on the total reward metric, while the performance
improvement in categorical control case (2.50%) is smaller
than that in the discrete control case (3.32%). The reason is
that, for categorical control, only cache size scaling action a1

is discrete value, while for discrete control case, both a1 and
a2 are discrete values, which results in a greater improvement.

From the action sequence in the discrete control scenario as
shown in Fig. 8, JEANA-W switched strategies for a total of
6 times, while JEANA only switched strategies for 5 times.
JEANA achieved the best total reward performance while
saving the cost of strategy switching. Besides, there is time
consistency between the strategy switching and size scaling.

3) Performance improvement guarantee stabilizes the
training process: we run experiments to prove that the
performance improvement guarantee of JEANA stabilizes the
training process of learning a joint caching policy.

We iteratively train our JEANA model on the training
data. Fig. 6 represents the training process and episode re-
ward of JEANA-a1, JEANA-a2, JEANA-W , and JEANA.
JEANA achieves higher episode reward than other baselines.
The episode reward of JEANA continuously increases and
finally converges. Besides, comparing to JEANA-W , JEANA
performs more stable, especially at the latter phase of training.

V. RELATED WORK

A. Adaptive Caching

Size-only strategies focuses on adaptive cache resource
allocation or adaptive cache storage rental. Dehghan et al.
[4] proposed a utility-driven cache partitioning approach for
multiple content providers. Chu et al. [18] formulated the
problem of jointly optimizing cache resource allocation and
request routing as mixed-integer programming. These works
made assumptions on inter-request time distributions or re-
quest rate variations. Kwak et al. [3] first considered the
problem of dynamic cache rental and content caching in elastic
wireless CDNs. It selects investment, placement, and request
association to maximize the utility of content providers. Carra
et al. [19] considered elastic cloud caching. They proposed an
adaptive TTL-based solution to dynamically track the required
cache size to minimize the total cost, which contains the sum
of storage cost and cost due to the misses.

Strategy-only strategies adaptively adjust the replacement
strategy to improve performance. LRFU [6] provided a spec-
trum of policies using a parameterized function to determine
the effects of recency and frequency factors on the likelihood
of future re-reference. Adaptive LRFU (ALRFU), dynamically
adjusts the parameter [7]. An online self-tuning method called
adaptive replacement cache (ARC) were developed [8], it
adapted cache partitions while had constant complexity.

B. Deep Reinforcement Learning

DRL can be roughly divided into four categories, depending
on whether the action space handled is continuous or discrete.
The first category includes Deep Q-network (DQN) [20] and
its variants such as Double Q-learning [21] can only handle

discrete action spaces. Deep Deterministic Policy Gradients
(DDPG) [22] and its variant Twin Delayed DDPG (TD3) are
model-free RL algorithms designed for handling continuous
action spaces. Soft actor-critic (SAC) [23] is a DRL framework
for training maximum entropy policies in continuous action
spaces. Asynchronous Advantage Actor-Critic (A3C) [24] and
its single-worker version Advantage Actor-Critic (A2C) [25]
are capable of handling both discrete and continuous action
spaces. Trust Region Policy Optimization (TRPO) [13] and
Proximal Policy Optimization (PPO) [26] can also deal with
both discrete and continuous action spaces.

C. RL for Caching

Recently, RL methods have applied in caching problems.
They cast the caching problem as an MDP problem and
then solve it using RL methods. [10] used the Q-learning
approach to derive the optimal fetching-caching strategy to
minimize the overall cost of expenditure. However, Q-learning
is only applicable to scenarios with low-dimensional state-
action space, and it is difficult to apply to problems with large
state-action spaces. In [9], the proactive caching problem in
the dynamic content request scenario is modeled as an MDP,
and the optimal threshold in the caching strategy is obtained
by the strategy gradient method to minimize the long-term
average energy cost. To solve the content cache of the base
station at the edge node, [11] added the Wolpertinger method
to the DDPG framework to maximize the long-term cache
hit rate. [27] proposed RL-cache, which models the cache
admission problem in the CDN cache as an RL problem and
solves it with the Monte Carlo method to maximize the cache
hit ratio. Besides, the authors selected the content size, request
frequency, and most recently requested features as features to
train the model.

VI. CONCLUSION

To simultaneously optimize two different variables, i.e.,
categorical and discrete variable in joint elastic caching prob-
lem, we propose a distribution-guided reinforcement learning
framework JEANA to learn the joint policy. It utilizes a
distribution-guided regularizer based on Wasserstein distance
to constrain the action distribution to be smoother and capture
continuity among discrete variables, which improves model
representation and capacity. Furthermore, we prove that this
algorithm has a theoretical guarantee of monotonic policy
improvement. We demonstrate the effectiveness of our method
on real video-on-demand request traces, which shows JEANA
improves the cache hit ratio while reducing the rental cost.
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