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Abstract—With the advancement of deep learning techniques,
major cloud providers and niche machine learning service
providers start to offer their cloud-based machine learning tools,
also known as machine learning as a service (MLaaS), to the
public. According to our measurement, for the same task, these
MLaaSes from different providers have varying performance
due to the proprietary datasets, models, etc. Federating different
MLaaSes together allows us to improve the analytic performance
further. However, naively aggregating results from different
MLaaSes not only incurs significant momentary cost but also may
lead to sub-optimal performance gain due to the introduction
of possible false positive results. In this paper, we propose
Armol, a framework to federate the right selection of MLaaS
providers to achieve the best possible analytic performance. We
first design a word grouping algorithm to unify the output labels
across different providers. We then present a deep combinatorial
reinforcement learning based-approach to maximize the accuracy
while minimizing the cost. The predictions from the selected
providers are then aggregated together using carefully chosen en-
semble strategies. The real-world trace-driven evaluation further
demonstrates that Armol is able to achieve the same accuracy
results with 67% less inference cost.

Index Terms—machine learning as a service, cloud federation,
combinatorial reinforcement learning, object detection

I. INTRODUCTION

Recent advancements in machine learning techniques and
the maturation of cloud services have propelled the intro-
duction of machine learning as a service, in which cloud
providers offer machine learning training platforms or machine
learning inference services via machine learning APIs to
users. Major cloud providers, such as Amazon Web Service1

(AWS), Microsoft Azure2, Google Cloud Platform3 (GCP),
etc., and niche machine learning vendors, such as BigML4,
Algorithmia5, etc., have all offered their own MLaaS. The
MLaaS market was valued at 1.60 billion USD in 2020 and is
expected to reach 12.10 billion USD by 2026 [1]. The well-
defined interfaces and the free maintenance burden for the
underlying cloud infrastructures allow more industrial verticals
and applications to access the machine learning process from
anywhere, at any time.

∗Corresponding author.
1https://aws.amazon.com
2https://azure.microsoft.com
3https://cloud.google.com
4https//bigml.com
5https://algorithmia.com/

From the users’ perspective, although the high abstraction
of MLaaS brings ease of use, these abstracted services have
also made the underlying latency, accuracy unknown to the
users. To explore the underlying mechanisms of cloud services,
previous works mainly focus on measuring the inference
accuracy and latency of user-known models [2], [3]. The
performance of cloud-based inference services has not been
studied yet. According to our initial measurement by collecting
the predictions from object detection services, we find that the
overall mAP of the major cloud services significantly differs
from each other, and each provider has different sweet-spot
categories of tasks that achieve the best analytic performance
than other categories. For example, in our measurement,
though AWS outperforms Azure by 3.7% in the general object
detection task, Azure outperforms AWS by 10.9% in a specific
“bottle” category. Therefore, leveraging the service provider
with the highest general accuracy loses the opportunities to
fully exploit the analytic capability of all providers. On the
contrary, aggregating all service providers may also introduce
extra false positive results. To gain the most from these MLaaS
providers, it is thus beneficial to combine the expertise from
different service providers and select the right set of MLaaS
providers.

However, realizing MLaaS federation is non-trivial. First,
different MLaaS providers may have different vocabulary
to describe the same task. With the fast update of each
provider’s services, we need an efficient algorithm to unify
the description languages used in different providers. Second,
it is computational challenging to select the right set of
providers due to the combinatorial nature of this problem.
The large possible provider list and the resulting exponential
number of choices make the brute-force approach not scalable
and practical in real-world scenarios. Third, after receiving
the analytic results from different service providers, how to
efficiently merge these results to offer optimal aggregated
results also need further design.

Therefore, in this paper, we present Armol, the first work
on MLaaS federation for optimal analytic performance. Our
framework covers three parts: the provider selection part, the
word grouping part, and the ensemble part. Specially, we
propose a combinatorial reinforcement learning (RL)-based
approach to solve the provider selection problem. We map
continuous action spaces to discrete integer action spaces by



finding the nearest neighbor in large discrete combinatorial
action spaces of a continuous action so that we can solve
the computational challenge of select the right providers.
Our word grouping part unifies the categories with the same
meaning from different providers based on the synonym
dataset extracted from WordNet [4]. In the ensemble part, we
use an affirmative voting strategy and weighted box fusion
for ablation so that the total analytic results can be further
optimized. We conduct extensive real trace-driven experiments
to evaluate the performance of our framework.

In summary, our contributions are:
• Our measurement studies on major cloud providers reveal

the varying differences among existing MLaaS offerings
and the great potential in MLaaS federation to improve
analytic performance.

• We formulate the MLaaS federation problem as a com-
binatorial provider selection problem and propose a
combinatorial reinforcement learning-based approach to
maximize accuracy.

• Efficient ensemble and grouping strategies are proposed
to unify the vocabulary of different providers and aggre-
gate the eventual results.

• Real-world trace-driven simulations demonstrate that our
framework can reduce 67% cost of inference fee with-
out sacrificing accuracy compared to other benchmark
approaches.

The remainder of this paper is organized as follows. Sec. II
explains why MLaaS federation is necessary and possible.
Sec. III describes the MLaaS federation problem formulation
and explains why we need a combinatorial RL approach.
Sec. IV introduces the three parts of Armol. We evaluate
Armol in Sec. V. Sec. VI presents the related work, followed
by the conclusion in Sec. VII.

II. MEASUREMENT & MOTIVATION

In this section, we analyze the latency and accuracy of
existing major MLaaS products, AWS Rekognition [5], Azure
Computer Vision [6], and Google Cloud Vision AI [7], and
demonstrate the great benefit in MLaaS federation and the
feasibility for achieving this.

We conduct the measurement from March to July 2021 and
rent the virtual machines (VMs) located in Singapore and the
USA from AWS and Azure as clients to request these major
MLaaS products. The types of AWS VMs are t1.micro
and t2.micro, and the type of Azure VMs is Standard
B2s. The above VMs have similar CPU, memory, storage,
and network bandwidth. We request these services via Python
SDK and capture the TCP packets by tcpdump. We take
the object detection task as an example, and the accuracy
metrics selected for this task are mean average precision
(mAP ), mAP with intersection over union (IoU) threshold
50% (AP50), and mAP with IoU threshold 75% (AP75) [8].
COCO Val 2017 [9] is chosen to test the performance of
these services. For AWS Rekognition and Azure Computer
Vision, we choose Singapore as the region for cloud service
because the users prefer to choose the closest region to reduce

TABLE I: AP of different MLaaS providers.

Provider mAP AP50 AP75

AWS 18.81 28.88 20.84
Azure 15.10 24.38 16.14
GCP 16.23 23.03 18.12
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Fig. 1: The AP comparison of AWS Rekognition, Azure
Computer Vision, and Google Cloud Vision AI on top-10
frequent categories of COCO Val 2017.

the latency. Unlike the above two, Google Cloud Vision AI
picks the region for the user, who cannot choose the region
themselves.

A. Why We Need MLaaS Federation

In Tab. I, we compare the AP on predictions of the COCO
Val 2017 from AWS Rekognition, Azure Computer Vision,
and Google Cloud Vision AI. We find that Azure has the
worst performance on average. However, it does not mean
that Azure performs poorly on every category in the dataset.
We select top-10 frequent categories in COCO Val 2017 and
compare the AP50 of the predictions from AWS, Azure, and
Google on these categories. In Fig. 1, AWS is the best for
categories such as “person”, “chair”, “car”, and “handbag”.
Azure is the best for categories such as “cup”, “bottle”, and
“dining table” while AWS did not identify any objects on these
three categories. Google is the best on category “book”. These
phenomena indicate that for input with different features, the
most appropriate MLaaS provider differs.

We next reveal the benefit of MLaaS federation. Following
the ensemble strategies which will be introduced in Sec. IV-D,
we have the AP50 of AWS, Azure and Google are 0.64, 0.56
and 0.56, and the AP50 of the ensemble predictions from three
MLaaS providers is 0.68, as is demonstrated in Fig. 2. We can
see that the ensemble predictions from three MLaaS providers
have higher AP50 than the prediction from a single provider,
verifying that the federation of MLaaS providers can provide
more accurate prediction. In addition, by comparing Fig. 2e
and Fig. 2h, we find that the ensemble predictions of AWS and
Azure (AP50 = 0.71) is better than the ensemble predictions
of three cloud providers (AP50 = 0.68). These phenomena
suggest that adding multiple MLaaS providers to inference
can achieve higher accuracy than a single one. Still, more



(a) Ground truth, AP50 : 1.00 (b) AWS, AP50 : 0.64 (c) Azure, AP50 : 0.56 (d) Google, AP50 : 0.56

(e) AWS+Azure, AP50 : 0.71 (f) AWS+Google, AP50 : 0.69 (g) Azure+Google, AP50 : 0.67 (h) Three providers, AP50 : 0.68

Fig. 2: Detections and AP50 of different cloud combinations.

MLaaS providers added do not mean that we can gain higher
accuracy.

B. Why MLaaS Federation is Possible

By analyzing the TCP packets, we discover that the latency
of a request consists of the transmission latency and the
inference latency. The transmission latency is determined by
the input data size and the round trip time (RTT) between the
location of the client and the region of the MLaaS provider.
The inference latency is determined by the MLaaS itself,
which is independent of the network conditions. Considering
that the size of returned data is very small, the download time
is negligible.

We compare the inference latency parsed by our TCP
packets in two routes, namely requesting MLaaS in Singapore
from Singapore (SG-SG) and requesting MLaaS in Singapore
from the US (US-SG). Both routes request MLaaSes within
the region of Singapore, so theoretically, the inference latency
should be similar. By analyzing the measurement results in
Fig. 3a, we find that the inference latency of both SG-SG and
US-SG is similar within 24 hours in a day, which proves that
the way we divide the total latency is correct.

Since the user must send requests to multiple MLaaS
providers, we consider the latency in such a case. The user
device transfers input data to various MLaaSes by HTTPS,
which indicates that the user device sends n inputs to the
MLaaSes sequentially via the same route in the transmission
phase. Thus, the transmission latency is equal to the sum of the
time to send the n inputs. In the inference phase, n MLaaSes
predict the results in parallel, so the inference latency equals
the maximum of the inference time among the n MLaaSes.
In Fig. 3b, we find that the transmission latency is much
smaller than the inference latency. With sufficient network
bandwidth, the above phenomenon indicates that although our
transmission latency increases linearly with the number of
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Fig. 3: The inference latency in both routes (SG-SG and US-
SG) are similar in 24 hours, which indicates that the way we
divide the total latency is correct. The transmission latency is
much less than inference latency.

MLaaS providers, the total latency will not increase linearly
with MLaaS providers.

III. SYSTEM MODEL AND PROBLEM FORMULATION

MLaaS can be seen as a function that gets input data, such as
an image, a text or a speech, and returns the prediction of the
input, such as image category, translated text or text generated
by the input speech. The specific forms of the input and output
depend on the task targeted by MLaaS. Here we generalize it
and assume that there are a set of inputs I = {I1, I2, ..., IT }
to be processed by N available MLaaS providers. We denote
at = [at,1, at,2, ..., at,N ], at,i ∈ {0, 1}, i ∈ {1, ..., N} as the
combination of selected MLaaS providers, i.e., at ∈ {0, 1}N .
We denote ct,i as the cost to request the i-th MLaaS provider
Mi at timestamp t. Then the cost of the combination at can be
denoted as ct =

∑N
i=1 ct,iat,i. We denote Pat

as the ensemble
prediction from selected MLaaS providers determined by
action at. Then the final predictions for all input data can
be represented as P = [Pa1 , Pa2 , ..., PaT

]. We denote vat to
represent the accuracy of the prediction Pat .



We strive to identify the appropriate selection of MLaaS
providers to maximize the accuracy and minimize the cost for
all input data. In summary, the MLaaS federation problem (Ω)
can then be formally formulated as:

max
∑
t∈T

(vt + βct), (1)

s.t. F(P) ≥ Ao,∑T
t=1

∑N
i=1 ct,iat,i ≤ Co,∑N

i=1 at,i 6= 0, t ∈ {1, 2, ..., T},
at,i ∈ {0, 1},

P = [Pa1
, Pa2

, ..., PaT
],

(2)

where β, usually non-positive, is a hyperparameter to adjust
the preference between accuracy and cloud cost, F is a
function mapping from the predictions of all input data to
accuracy, Ao is the target accuracy, and Co is the overall
budget for processing the whole workload.

The MLaaS federation problem Ω is NP-complete. The goal
of Ω is to maximize the accuracy while minimizing the cost.
Assume we only consider the computation of the provider
selection part, and we have T inputs and N MLaaS providers.
Then we have to predict whether the combination of N MLaaS
providers is optimal for each input or not. Even if we know
the ground truth for each input, we need O(2N ) comparisons
to know the optimal combination corresponding to this input.
Thus, the overall time complexity is O(T · 2N ).

In a practical application environment, the prior information
of input and corresponding optimal MLaaS provider combi-
nation is seldom available. Model-based solutions may not
sufficiently adapt to the request dynamics and make intelligent
provider selection decisions. In addition, the model and the
dataset used to train the model of MLaaS are updating with
the evolution of deep learning algorithms, making it difficult to
achieve global optimally, especially in considering a long-term
optimization.

The recent success in combinatorial RL provides an alterna-
tive perspective for this problem. Combinatorial RL reduces
the complexity of the provider selection part. The rich his-
torical viewer request patterns offer invaluable data resources
that could be utilized for a data-driven provider selection
problem. Specifically, the learning-based approach can not
only well capture the hidden dynamics of input data and the
model behind MLaaS but also enable an end-to-end solution
from input data to MLaaSes’ combination decision. Given
these unique advantages, we present a combinatorial RL-based
approach to solving this problem in the next section.

IV. MLAAS FEDERATION FRAMEWORK

In this section, we present Armol, a combinatorial RL-
based cost-effective MLaaS federation framework that adap-
tively makes decisions about which providers to request to
maximize the accuracy while minimizing the cost. We start by
introducing the workflow of our framework. We then present
the details of the provider selection part, the word grouping
part, and the ensemble part.

A. Framework Overview

We consider a typical edge scenario for object detection. As
shown in Fig. 4, Armol receives an image at the beginning. In
the provider selection part, we first extract the image features
(i.e., state st) at the edge-side client, and then we generate
the proto action ât based on the image features by using the
actor-network trained on the soft actor-critic (SAC) algorithm
[10]. However, the proto action is a fractional vector, we have
to map it to a binary vector at. Then the edge client requests
the providers selected by action at and waits until receiving
all the predictions from selected providers. Cloud 1, 2 to n
are the available MLaaS providers. Next is the word grouping
part. Since different cloud services may use different words
to represent the same category, we need this part to identify
and unify words with the same meaning into one form to
ensure that the subsequent ensemble part can be performed
correctly. Finally, there is the ensemble part, which aims to
ablate duplicate predictions while retaining the correct ones.
In total, there are 12 pathways to choose from, and we end up
with the Affirmative-WBF path based on our measurements in
Sec. II. Armol also generates reward rt in the ensemble part,
which will be store in replay buffer with the binary action
vector at, the state st and the next state st+1. Only after
going through the above modules, the final prediction can be
drawn on the image. The remainder of this section covers the
details of Armol.

B. Provider Selection: A Combinatorial RL Approach

We first describe the design of state, action, and reward for
our MLaaS federation problem.

State. To facilitate the training of the model, we use a pre-
trained MobileNet, a classical model on the image classifica-
tion task, to extract the feature of input, which represents the
state st obtained from the environment at timestamp t. This
method is described on the left top of Fig. 4.

Action. A subset of N MLaaS providers can be represented
by a vector at ∈ A = {0, 1}N and at 6= {0}N , where the i-th
element 1 means that the i-th provider is in this subset, while
0 means not. i.e, at = [a1,t, ..., aN,t], ai,t ∈ {0, 1}. If we have
N available MLaaS providers, then the size of action set A
is 2N − 1. Thus, the action space of our MLaaS federation
problem is an exponential multiple of N . When N is large, it
is hard for RL algorithms with discrete action spaces to handle
the action spaces with size 2N − 1. Thus, we have to solve
this problem by mapping the â from continuous action spaces
to an element in discrete binary vector set A:

τ : Rn → A, (3)

τ(â) = arg min
a∈A

|a− â|2, (4)

where τ is the nearest-neighbor mapping from a continuous
space Rn to the discrete binary vector set A. It returns the
action a that is closest to â by l2 distance. The action a will
be stored to replay buffer later with other elements.

Reward. There are two modes of the training process,
offline and online, and the definition of rewards in the two
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Fig. 4: The overview of Armol. For the object detection task, we need to group the category names with the same meaning
into exact representation in the word grouping part; we need to ablate the redundant detections in the ensemble part.

modes are different. As described in [8], we need the ground
truth to calculate the mAP. However, in practical applications,
not all input images have ground truth. For images without
ground truth, we use the ensemble prediction of N MLaaS
providers as the ground truth. As shown in Fig. 2, although
the mAP of N -providers ensemble prediction is not optimal, it
is still better than the prediction of a single provider. Thus, it is
feasible to use the ensemble prediction of all available MLaaS
providers as ground truth. In addition to increase the mAP, we
also want to use as few MLaaS providers as possible to reduce
the inference fee. In summary, the reward can be defined as
follows:

rt = vt + βct, (5)

where vt is the AP50 of prediction, ct is the cost to request
the subset of MLaaS providers selected by action at, β is a
hyperparameter, usually a non-positive number, to ensure that
the action with a lower cost is selected. It is possible that
providers selected by action a will not return any prediction,
for which case we define the reward as −1.

We leverage SAC to train the RL agent. SAC is an off-
policy actor-critic algorithm based on the maximum entropy
RL framework. [10] explains the principle of SAC. Thus, we
describe the details of training the RL agent next.

The algorithm of training the RL agent is proposed in
Algo. 1. First, we initialize the replay buffer B, the hyperpa-
rameter β, and the parameters for two Q-networks, two target
Q-networks, and an actor-network. We use a fully connected

network (FCN) with two hidden layers to represent the above
networks, and the difference between the Q-network and actor-
network is the input and output layers. Our training algorithm
makes use of two soft Q-functions to mitigate positive bias
in the policy improvement step that is known to degrade the
performance of value-based methods [11].

Second, for each step, we observe the input image and
extract the feature as the state. We select the action â by policy
πθ(·|s), then map â to a binary action a and execute a in the
environment to observe the next state s′, reward r, and done
signal d. We next store (s,a, r, s′, d) to replay buffer B.

Finally, if it is the step to update the networks, we sample
a batch of transitions from replay buffer B. The target of Q-
network is given by:

y(r, s′, d) =

r + γ(1− d)

(
min
j=1,2

Qφtarg,j
(s′, ã′)− α log πθ(ã

′|s′)
)
, (6)

where ã′ is sampled from πθ:

ã′ ∼ πθ(·|s′). (7)

Then we can update two Q-networks Qφi , i = 1, 2 by one step
of gradient descent using:

∇φi

1

|B|
∑

(s,a,r,s′,d)∈B

(Qφi
(s,a)− y(r, s′, d))2, (8)



and update the policy by one step of gradient ascent using:

∇θ
1

|B|
∑
s∈B

(
min
i=1,2

Qφi
(s, ãθ(s))− α log πθ(ãθ(s)|s)

)
, (9)

where ãθ(s) is a sample from πθ(·|s′). At last we update the
target networks Qtarg,i, i = 1, 2 with:

φtarg,i ← ρφtarg,i + (1− ρ)φi. (10)

Note that our implementation of SAC omits the extra value
function because Q-function and value function can represent
each other [10]. This part is in the top center of Fig. 4, Armol
will request the MLaaS providers selected by the action at
next.

Algorithm 1: Training the RL agent with SAC

1 Initialize policy parameters θ;
2 Initialize Q-function parameters φ1, φ2;
3 Initialize replay buffer B;
4 Initialize hyperparameter β;
5 Set target Q-function parameters equal to main

parameters φtarg,1 ← φ1, φtarg,2 ← φ2;
6 for time=1,... do
7 Observe an input image, extract state s and select

action â ∼ πφ(·|s);
8 Get the nearest binary vector a of â in l2 distance;
9 Request the MLaaS providers selected by a;

10 Store (s,a, r, s′, d) to replay buffer B;
11 if it’s time to update then
12 for j in range(update times) do
13 Randomly sample a batch of transitions

B = {(s,a, r, s′, d)} from B;
14 Compute targets for the Qφ1

, Qφ2
using

Eq. 6;
15 Update Qφ1 , Qφ2 by one step of gradient

descent using Eq. 8;
16 Update policy by one step of gradient

ascent using Eq. 9;
17 Update target Q-networks using Eq. 10;
18 end
19 end
20 end

C. Word Grouping Part

After receiving the predictions from the selected providers,
we need to standardize the presentation of the returned pre-
dictions to prevent ambiguity. This part is task-oriented since
different tasks have different outputs. Here we take object
detection, a classical computer vision task, as an example.

As we mentioned in Sec. III, an object detection cloud
service can be seen as a function that returns a list of detections
D = [d1, d2, ..., dld ] where di is given by a triple [li, fi, bi] that
consists of the corresponding category li, the corresponding
confidence score fi, and a bounding box bi. The length of
detection list D, namely ld, represents the number of objects

detected on this image. However, the different services may
return the different category names for the object in the same
category, i.e., “motorbike” vs. “motorcycle”. It is clear that
these category names have the same meaning, so we propose
a feasible algorithm to aggregate the words with the same
meaning into one group.

The following are the details. First of all, the user must
provide a template T that contains all the category names they
need. Here we use the 80 categories of the COCO dataset as T
and find the close synonyms of category names in T based on
the synonyms dataset extracted from WordNet. Subsequently,
based on the measurement results, we collect the category
names from all MLaaS providers as set A. However, we find
that the synonyms from WordNet are not enough to cover all
words in A, so we manually add the missing words within
set A to the 80 groups. After that, we discard the remaining
words in set A that are irrelevant to the 80 categories in the
COCO dataset. For words in the same group, we consider they
have the same meaning when used as nouns. Finally, a single
detection di can be given by a triple [ni, fi, bi], where ni is
the group index of the corresponding category li. Only with
this problem solved can we compare the accuracy of different
MLaaS providers and ensemble the predictions correctly. This
part is on the central bottom of Fig. 4, where the client has
received the predictions from the selected MLaaS providers.

D. Ensemble Part

This ensemble part is also task-oriented. Fig. 2 illustrates
the mAP of different combinations of three providers. We find
that a single MLaaS provider has low mAP while the ensemble
of multiple MLaaS providers reaches excellent performance.
Therefore, based on the measurement results in Sec. II, we
propose a novel strategy to ensemble the predictions from
different object detection service providers. We divide this part
into two steps: voting and ablation.

Voting methods. Common voting methods include “Affir-
mative”, “Consensus” and “Unanimous” [12]. To conduct the
voting methods, we need to standardize the presentation of
the predictions from different MLaaS providers first. Then we
group the detections of the image into G = [g1, g2, ..., gr],
where gi, i ∈ {1, 2, ..., r} is a list of detections and r represents
the total number of objects detected by N cloud service
providers. For detections dp, dq ∈ gi, they must confirm that
IoU(bp, bq) > 0.5 and np = nq . IoU(a, b) is calculated by
dividing the area of intersection between box a and box b by
the area of union between a and b. Then we adjust the three
voting methods to our work, which are described as follows.

• Affirmative. This method keeps all groups in G, which
means that the detection is valid whenever one of the
clouds says that a region contains an object.

• Consensus. This method holds the groups with a size
greater than N/2, meaning most clouds must agree that
a region contains an object.

• Unanimous. Only the groups whose size is equal to N
are kept in this method, which means that all the object



Fig. 5: Red boxes represent the ground truth. The left blue
boxes represent the detections from AWS, Azure, and Google.
The right top blue box is the box kept by NMS or Soft-NMS;
the right bottom blue box is the box generated by WBF [15].

detection cloud services must agree to consider that a
region contains an object.

We choose affirmative as the primary voting method. Be-
cause the three MLaaS providers are more of a complementary
relationship and their predictions do not overlap much, as an-
alyzed in Sec. II. Therefore, consensus or unanimous methods
may remove some of the true-positive results. Besides, the
evaluation results from [12] on different models also indicate
that the affirmative method is superior to other methods.

Ablation Methods. Boxes in a group may repeatedly
express an object, increasing the number of false-positive
predictions and leading to a lower mAP. To reduce useless
boxes (i.e., false-positive predictions), Non-Maximum Sup-
pression (NMS) [13], Soft-NMS [14], and Weighted Boxes
Fusion (WBF) [15] are proposed. NMS only saves the box
with the most significant confidence score among a group and
discards all other boxes. However, NMS inevitably removes
the detections of some highly overlapped objects. Thus, Bodla
et al. propose Soft-NMS to solve this problem. Instead of
completely removing the detections with high IoU, it reduces
the confidence score of the detections proportional to the
IoU value. However, both NMS and Soft-NMS discard re-
dundant boxes and thus can not effectively produce averaged
localization predictions from different models. WBF takes the
weighted average of the box coordinates within a group as the
retained box, where the weight is the confidence score of the
boxes. Moreover, the confidence score of the retained box is
the average of the confidence score of boxes within a group.

Our measurements in Sec. II find that the differences
between AWS, Azure, and Google are relatively significant.
As shown in Fig. 5, for the same object, the boxes of all three
cloud services are inaccurate and scattered in three directions.
If we use NMS or Soft-NMS methods to ablate the boxes, the
box kept is still inaccurate. However, if we use WBF to fuse
the boxes in all three directions, we can get a more accurate
predicted box. Therefore, we decide to use the WBF method
to ablate the duplicated boxes.

As described in Fig. 4, in the ensemble part, we first go
through the voting method for each group of similar boxes
and then remove the duplicate boxes by the ablation method.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of the MLaaS provider selection part in
Armol. Specifically, using real trace-driven evaluations, we
demonstrate that the superiority of Armol over other bench-
mark approaches.

A. Setup and Methodology
Evaluation Setup. We collect the predictions of COCO

Val 2017 from AWS Rekognition, Azure Computer Vi-
sion, and Google Cloud Platform Vision AI as the
environment. We open-source the code and data in
https://github.com/ShuzhaoXie/Armol. The in-
ference cost for AWS and Google Cloud Vision AI is 0.001
USD per image, while the inference cost for Azure varies by
about 10% with the region. Our measurements were done in
Singapore, and Azure’s price in this region is 0.001 USD.
So in the following experiments, we set the inference cost
of each request to an MLaaS as 0.001 USD. We implement
the algorithm of the RL agent based on the SpinningUp
[16] framework and add support for GPU training, which
runs on a server with an NVIDIA 1080 Ti GPU card, an
Intel(R) Xeon(R) CPU E5-2650 v4@2.20GHz, and 64 GB
memory. The RL environment is implemented in Python for
compatibility. The learning rate η for the actor-network and
the Q-networks is 0.0001, respectively. We set γ as 0.9, and
α as 0.2. In order to gain the best mAP, we set β as 0. The
batch size is 1000. The training epoch is 100, and the steps
per epoch is 2000.

Baseline Methods. We compare our approach with several
baseline methods as follows.
• Random-1: This method only gives a random selection

of MLaaS providers for each image.
• Random-N: This method chooses a subset of available

MLaaS providers for each image randomly.
• Ensemble-N: This method aggregates the predictions of

all MLaaS providers.
• Armol-w/o gt: This method uses the ensemble predic-

tions of all MLaaS providers as the ground truth to
generate the reward. The hyperparameter β is set as −0.1
to select the action with the lower cost of inference fee.
The other hyperparameters are the same as Armol.

• Armol-P: This method means that we train the RL agent
on proximal policy optimization (PPO) [17], which is a
classical on-policy RL algorithm that is worth comparing.

• Armol-T: This method means that we train the RL agent
on twin delayed deep deterministic policy gradient (TD3)
[11]. TD3 is a classical deterministic policy training
algorithm, the comparison with which can demonstrate
the benefits of the maximum entropy property of SAC.

• Upper Bound: To reach the goal of gaining more mAP
while spending less money, based on the measurements
in Sec. II, we use a brute-force search algorithm to select
the best combination, which is demonstrated in Algo. 2.
The voting method is affirmative, and the boxes ablation
method is WBF.



Algorithm 2: Brute Force Search Algorithm

1 Initialize set D to store the best detection of all
images;

2 for image It in I do
3 Initialize the max mAP vmax = −1;
4 for action a in {0, 1}N − {0}N do
5 Get and ensemble the detection Da by action;
6 Calculate the mAP vDa of detections Da;
7 if v ≥ vmax then
8 Update vmax to vDa ;
9 Update the best action ā to a;

10 Update the best detection D̄a to Da;
11 end
12 end
13 D ← D ∪ D̄a;
14 end
15 return D.

Evaluation Metrics. We use the following metrics:
• Cost: We denote this metric as average cost ce in a test

episode, in unit of 10−3 USD:

ce =

∑T−1
t=0 ct
T

(11)

• AP50: This metric means the average precision of pre-
dictions with a 50% IoU threshold. We use AP50 instead
of mAP is because we want to reduce the computation
and speed up the training. Because mAP is the average
of APs with IoU threshold from 50% to 95% with a 5%
increase per step. AP50 is the average precision with a
50% IoU threshold, the computation of which is 10% of
mAP. Besides, AP50 is also a standard metric in object
detection tasks.

B. Evaluation Results

To understand the performance of the provider selection
part, we conduct experiments to demonstrate: 1) the superiority
of training RL agent on SAC; 2) the feasibility to leverage
predictions from all MlaaS providers as ground truth; 3) the
scalability of our combinatorial RL approach.

Superiority of training RL agent on SAC. Tab. II shows
the metric statistics of Armol on SAC, PPO and TD3. We can
see that the mAP of Armol on SAC is greater than PPO and
TD3, and the average cost is lower than TD3. In Fig. 6, we
can find that the SAC converges better and faster. Compared
to Random-N, Armol on SAC have 3.09% higher mAP and
41.75% less cost of inference fee. Compared to Ensemble-N,
the Armol with ground truth (Armol-w/ gt) gains equal mAP
and reduces 67% cost of inference fee.

Feasibility to leverage predictions from three providers
as ground truth. Tab. II shows the without ground-truth
method reduces 66% cost compared to all federated predic-
tions with only 4.3% lower mAP. As can be seen in Fig. 7,
Armol-w/o gt converges stably, although both AP50 and cost
are not as good as Armol-w/ gt in the training process.
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Fig. 6: The label of Y-axis on left is mAP@50 of the whole
episode, which is the same as AP50. The label of Y-axis on
right is average cost per test episode. The training algorithm
test the RL agent at the end of every epoch. The figure shows
the training processs of Armol on SAC, Armol on PPO and
Armol on TD3.
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Fig. 7: w/ gt means the “Armol with ground truth”; w/o gt
means the “Armol without ground truth”.

TABLE II: Performance metrics of different baseline methods.
“AWS” means that how many images in the test episode
choose the AWS, while “Azure” and “Google” have the same
meaning. “Armol-w/ gt” has the same meaning with “Armol”
and “Armol on SAC”. The unit of cost is 10−3 USD.

Methods mAP AP50 Cost AWS Azure Google
Random-1 15.75 24.49 1.000 1690 1605 1657
Random-N 18.66 28.89 1.722 2858 2863 2809

Ensemble-N 21.75 34.69 3.000 4952 4952 4952
Armol-w/ gt 21.75 34.71 1.003 2863 950 1156
Armol-w/o gt 20.81 32.68 1.016 3426 683 924
Armol-PPO 14.99 25.05 1.087 1300 2541 1543
Armol-TD3 18.90 29.20 1.006 4843 114 26

Upper Bound 23.83 37.70 1.202 3881 1126 944

Scalability of combinatorial RL approach. To test the
scalability of our approach towards a more significant num-
ber of MLaaS providers, we add the results of Alibaba
Cloud Object Detection [18] and synthetic six more MLaaS
providers. The details of these simulated MLaaS providers
are available in our github reposity. We index AWS, Azure,
Google, Alibaba, and six simulated providers as MLaaS 0-
9. In Tab. III, we find that the ensemble predictions of 10
MLaaS providers are lower than MLaaS 5. We suggest that
the reason for this phenomenon is because the AP50 of MLaaS
5 is 20%-30% higher compared to the other MLaaS providers,



TABLE III: Performance metrics of different simulated
MLaaS. The unit of cost is 10−3 USD.

MLaaS AP50 Cost MLaaS AP50 Cost
0 28.88 1.000 5 53.43 1.000
1 24.38 1.000 6 20.76 1.000
2 24.38 1.000 7 51.33 1.000
3 34.69 1.000 8 25.13 1.000
4 50.19 1.000 9 34.81 1.000

All 49.29 10.000 Armol 53.44 1.002
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Fig. 8: Training process with 10 available MLaaS providers
(1023 actions). The mAP@50 (AP50) and cost converges
stably.

which cannot provide more true positive results and only
increases the number of false positive results in the ensemble
predictions. However, as shown in Tab. III, the AP50 of
Armol is slightly better than MLaaS 5 with almost the exact
cost, which indicates that although the AP50 of the MLaaS
providers varies greatly, our algorithm still selects the better
combinations. In Fig. 8, our combinatorial RL approach still
stably converges with ten providers (1023 actions) in both
AP50 and cost.

VI. RELATED WORK

A. Measurements on Machine Learning Services

There are previous works that measure the inference accu-
racy and latency of machine learning models [2], [3], but these
measurements are mainly on user-known models instead of
machine learning services. In addition, [19] aims to measure
the machine learning training platforms instead of machine
learning inference services. There is also a measurement work
[20] on older machine learning services limited to decision
trees, SVMs, and multi-layer fully connected neural network
services, which is much different from the next generation
machine learning services that are now being promoted with
models that are transparent to users and in favor of deep
learning.

B. Cloud Federation

Cloud federation comprises services from different
providers aggregated in a single pool supporting three
basic interoperability features-resource migration, resource
redundancy, and complementary resources resp. services [21].
In the past, cloud federation represents integrating explicit
resources, such as storage and compute resources. In contrast,

we integrate the implicit resources, which are the training
data and model behind the online public machine learning
services. Furthermore, the past concept of cloud federation
enables further reduction of cost due to partial outsourcing
to more cost-efficient regions [22]. However, we consider the
reduction of cost only after reaching the highest mAP.

C. Reinforcement Learning with Combinatorial Action Spaces

Discrete, high-dimensional action spaces are common in
applications such as natural language processing [23], text-
based applications [24] and vehicle routing [25], but they
pose a challenge for standard RL algorithms [26], because
enumerating the action space when choosing the next action
from a state becomes impossible. Recent remedies for this
problem include selecting the best action from a random
sample [23], approximating the discrete action space with
a continuous one [27], [28], training an additional machine
learning model to wean out sub-optimal actions [24], or
formulating the action selection problem from each state as a
mixed-integer program [25]. [29] adds the wolpertinger policy
to the edge cache problem, but it is just an application and has
no contribution to the policy. Our provider selection approach
embeds the continuous action to the nearest neighbor in binary
action space. To increase the probability of exploration, we
used SAC for training instead of DDPG.

VII. CONCLUSION

In this paper, we propose Armol, a novel cost-effective
MLaaS federation framework that leverages deep combina-
torial RL to boost the average precision of federated object
detection services so as to minimize the cost. Through our
analysis on the predictions of COCO Val 2017 from AWS
Rekognition, Azure Computer Vision, and Google Vision AI,
we demonstrate that the mAP of federated MLaaS providers is
higher than a single provider, and more MLaaS providers do
not mean higher accuracy. Inspired by the recent advances in
RL algorithms for combinatorial action spaces, we propose
a combinatorial RL-based approach to decide on how to
choose the best combination of available MLaaS providers for
input. The evaluation further demonstrates the strengths of our
approach.
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