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ABSTRACT

Convolutional neural networks (CNNs) have obtained great success

in image restoration tasks, like single image denoising, demosaicing,

and super-resolution. However, most existing CNN-based methods

neglect the diversity of image contents and degradations in the

corrupted images and treat channel-wise features equally, thus

hindering the representation ability of CNNs. To address this issue,

we propose a deep mix-order attention networks (MAN) to extract

features that capture rich feature statistics within networks. Our

MAN is mainly built on simple residual blocks and our mix-order

channel attention (MOCA)module, which further consists of feature

gating and feature pooling blocks to capture different types of

semantic information. With our MOCA, our MAN can be flexible to

handle various types of image contents and degradations. Besides,

our MAN can be generalized to different image restoration tasks,

like image denoising, super-resolution, and demosaicing. Extensive

experiments demonstrate that our method obtains favorably against

state-of-the-art methods in terms of quantitative and qualitative

metrics.
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1 INTRODUCTION

Image restoration is a fundamental problem in image processing

community, which aims to recover high-quality images from their

corrupted low-quality images. However, image restoration is a
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highly ill-posed problem since image degradation processes are ir-

reversible. Based on the type of degradations, image restoration can

be further divided into different subtasks, including image denois-

ing [36, 39, 42], image super-resolution (SR) [4, 32, 43], compression

artifacts reduction (CAR) [2, 5, 39], and other applications [1, 8]. To

date, due to the powerful feature representational ability of convo-

lutional neural networks (CNNs), a plenty of CNN-based methods

have been developed to reconstruct missing information from the

corrupted low-quality images.

The early CNN-based image restoration methods like SRCNN

[6] and ARCNN [5] adopt shallow-layer networks and obtain re-

markable performance against previous works. To ease the training

difficulty of deeper networks, Zhang et al. proposed DnCNN [39]

with residual learning for image denoising and compression arti-

facts reduction. Later, IRCNN [41] was developed by introducing

the denoiser prior for fast image restoration. To further improve the

performance, more sophisticated models [25, 30, 45] were proposed.

Among them, Mao et al. designed a very deep encoder-decoder

network with skip connections, while Tai et al. designed a very

deep persistent memory network. Recently, attention-based deep

methods [4, 36, 43, 45] have achieved impressive performance by

exploring the feature correlations of intermediate layers. Typical

methods [4, 24, 43] introduce channel attention (CA) mechanism

to adaptively rescale channel-wise features by explicitly modeling

interdependencies between channels, and thus allow the network

to focus on more useful channels. By contrast, Zhang et al. [45]

exploit spatial-wise feature correlations by considering long-range

dependencies in the whole feature map. These CNN-based methods

have achieved remarkable performance for image restoration tasks.

However, there exist several issues in the existing CNN-based

methods. First, the diversity of image contents and degradations

have not been fully considered. Most of them extract features from

the degraded images with the same convolutional filters, which

results in inflexibility to handling a wide variety of image contents

and degradations. Second, rich feature statistics of intermediate

layers have not fully captured. For example, RCAN [43] only uti-

lizes the first-order feature statistics by global average pooling,

while SAN [4] only exploits the second-order feature statistics by

covariance pooling as a channel descriptor. However, using only

first-order or second-order feature statistics is limited in represent-

ing the global distribution of channel-wise feature responses, thus

hindering the representational ability of CNNs. Meanwhile, recent

works [19, 38] have also shown that higher-order statistics are also

helpful to improve discriminative ability of CNNs.

To address the above issues, we propose a deep mix-order at-

tention networks (MAN) by exploring rich feature statistics of

intermediate layers to enhance the feature correlation learning

ability of CNNs. As shown in Fig. 1, the proposed MAN is built on

simple residual blocks (RB) and the proposed mix-order channel



attention (MOCA) module for exhaustively capturing hierarchical

features. Unlike previous works [4, 43] that only use only first- or

second-order features statistics, we exploit a mixture of 𝑘-order
(e.g., k=1,2,3,4) feature statistics as the channel descriptor, thus fully

capturing the global distribution of channel-wise responses. More-

over, to adapt our method to varying inputs and degradations, we

design a feature gating block to adaptively select specific 𝑘-order
channel attention for better feature correlation learning. In this

way, our MOCA allow the network to not only capture rich fea-

ture statistical information, but also emphasize more informative

features, thus improving the representational ability of CNNs.

In summary, the main contributions are listed as follows:

• We propose a deep mix-order attention networks (MAN)

for image restoration by exploring rich feature statistical

information. Our MAN is built on residual blocks and mix-

order channel attention (MOCA) module to extract features.

• We propose mix-order channel attention (MOCA) for better

feature correlation learning. Our MOCA contains feature

pooling block to capture rich feature statistics of interme-

diate layers, and feature gating block to adapt to varying

inputs and degradations, thus being more flexible for im-

age restoration. Based on MOCA, we can obtain better fea-

ture representation ability and thus achieve accurate image

restoration.

• We demonstrate with extensive experiments that the pro-

posed MAN is effective for different image restoration tasks.

Our MAN obtains impressive performance against state-of-

the-art methods for image denoising, super-resolution, and

demosaicing in terms of both quantitative and qualitative

metrics.

2 RELATEDWORKS
2.1 CNN-based Image Restoration

Recently, CNN-based image restoration algorithms show superior

performance over the traditional ones. In the early works, Vincent

et al. [34] simply stacked auto-encoder for image denoising. Dong et

al. [7] proposed shallow SRCNN for image super-resolution. Later,

Zhang et al. [39] proposed deeper CNNs to obtain better denoising

performance with residual learning. VDSR [15] increases the net-

work depth to a very high level, and proves that the network depth

is essential for image super-resolution task. EDSR [22] removes

unnecessary batch normalization module in residual networks and

increases the number of channels to further improve the model.

Other recent works [4, 23, 45] attempt to improve the performance

by exploiting feature correlation. Among them, Zhang et al. have

recently proposed a powerful image restoration method, named

RNAN [45], by exploiting spatial non-local attention. Other works

like RDN [46] andMemNet [30] form deep networks based on dense

blocks and concentrates on exploiting all hierarchical features from

all convolutional layers. Although these works have achieved sig-

nificant progress in image restoration, most CNN-based methods

focus on designing deeper network architectures, while neglecting

the diversity of inputs and degradations, thus hindering the dis-

criminative ability of CNNs. By contrast, we exploit rich feature

statistical information of intermediate layers to enhance the ability

of feature expressions.

2.2 Attention Mechanism

Attention mechanism is a common phenomenon in the visual field,

that is, the human visual system will adaptively process visual

information and focus on salient areas while ignoring irrelevant

information. Similarly, a plenty of of recent CNN-based models

have introduced attention mechanism to improve the performance

and achieved great success in different computer vision tasks. For

example, Wang et al. [35] proposed the residual attention network

for image classification. The trunk-and-mask attention mechanism

is composed of multiple attention modules, and can be easily scaled

up to hundreds of layers with great performance. Wang et al. [36]

proposed a non-local neural network by exploring spatial non-local

attention. Hu et al. [12] proposed the SENet to exploit channel-wise

relationships, which can effectively improve the representational

power of CNNs and achieve significant performance improvements

on image classification tasks. Recently, several works, such as NLRN

[23] and RNAN [45], RCAN [46] and SAN [4] have proposed to

investigate the effects of spatial attention or channel attention for

image restoration tasks. However, these attention-based methods

explore only first- or second-order feature statistics, while ignor-

ing rich higher-order features statistics, which are also helpful for

enhancing the representational ability. Here, we propose a deep

mix-order attention networks with distinguished power for image

contents and degradations.

3 MIX-ORDER ATTENTION NETWORKS

3.1 The Overall Framework

The overall framework of our mix-order attention networks (MAN)

is shown in Fig. 1, which mainly consists of residual block (RB)

and mix-order channel attention (MOCA) module. Specifically, the

first and last convolutional layers in our MAN serve as shallow

feature extractor and reconstruction layer, respectively. The stacked

residual block (RB) and mix-order channel attention (MOCA) aims

to extract features that capture rich feature statistics. In our MOCA,

feature pooling block aims to capture rich feature statistics, while

feature gating block allows our MAN adapt to varying image con-

tents and degradations.

The high-quality image and its corresponding low-quality image

(e.g., noisy) are denoted as 𝑋𝐻 and 𝑋𝐿 . Thus, the recovered images

𝑋𝑅 by our MAN can be expressed as

𝑋𝑅 = 𝐻𝑀𝐴𝑁 (𝑋𝐿), (1)

where 𝐻𝑀𝐴𝑁 (·) is the function of our MAN.

The MAN is optimized with a loss function. As previous works

show, different loss functions have been adopted, like 𝐿1 loss [22], 𝐿2
loss [30, 39, 41] and adversarial loss [18]. To verify the effectiveness

of ourMAN, we adopt the same loss function as previous works (e.g.,

𝐿2 loss). Specifically, given a series of training images with 𝑁 low-

quality images and its corresponding high-quality counterparts,

which is denoted by {𝑋 𝑖𝐿, 𝑋
𝑖
𝐻 }

𝑁
𝑖=𝑖 , the goal of training our MAN is

to optimized the 𝐿2 loss function as

𝐿(Θ) =
1

𝑁

𝑁∑
𝑖=1

| |𝐻𝑀𝐴𝑁 (𝑋 𝑖𝐿) − 𝑋 𝑖𝐻 | |2, (2)

whereΘ is the parameter set of MAN. The loss function is optimized

by stochastic gradient descent algorithm.
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Figure 1: The framework of our mix-order attention networks for image restoration. ‘CONV’, ‘RB’, ‘MOCA’ is convolutional

layer, residual block, and mix-order channel attention (MOCA) module, respectively. Our MOCA consists of feature gating

block and feature pooling block to capture semantic information and rich feature statistics of intermediate layers.
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Figure 2: Channel attention which uses global average pool-

ing to generate channel-wise statistics.

3.2 Mix-order Channel Attention Module

In this section, we introduce the novel mix-order channel attention

module, which models feature interdependencies based on rich

feature statistics.

3.2.1 Revisiting Channel Attention. By treating channel-wise fea-

tures unequally, channel attention mechanism focus on more in-

formative channels. Based on SENet [12], channel attention is di-

vided into squeeze and excitation operation. In squeeze operation,

channel-wise global spatial information is squeezed into a chan-

nel descriptor by global average pooling. As shown in Fig. 2, let

𝑈 = [𝑢1, 𝑢2, ..., 𝑢𝐶 ] denote the input, i.e., a feature map has 𝐶 chan-

nels with spatial size of 𝐻 ×𝑊 . The channel descriptor 𝑧 ∈ R𝐶 can

be generated by shrinking𝑈 in spatial dimension. The 𝑐-th element

of 𝑧 is calculated as

𝑧𝑐 = 𝐹𝐺𝑃 (𝑢𝑐 ) =
1

𝐻 ×𝑊

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝑢𝑐 (𝑖, 𝑗), (3)

where 𝐹𝐺𝑃 (·) is the global average pooling function, 𝑢𝑐 (𝑖, 𝑗) is the
pixel at position (𝑖, 𝑗) of 𝑐-th channel. Such channel descriptor can

be thought as a collection of the spatial information, and is used to

represent the global distribution of the whole 𝑐-th channel.

In order to make full use of the information aggregated by global

average pooling, the excitation operation is introduced to capture

channel-wise interdependencies. A simple gating mechanism with

a sigmoid activation is introduced, and we obtain the final channel

statistics 𝑠 as

𝑠 = 𝐹𝑒𝑥 (𝑧,𝑊 ) = 𝜎 (𝑊𝑢𝛿 (𝑊𝑑𝑧)), (4)

where𝑊𝑢 and𝑊𝑑 are weight sets of the two stacked convolutional

layers in the channel attention; 𝜎 refers to sigmoid function and 𝛿
refers to ReLU [28] function. To decrease model complexity and aid

generalisation, a bottleneck is used with two 1 × 1 convolutional

layers around the non-linearity, i.e., a convolutional layer with

parameter𝑊𝑑 acts as channel-downscaling with reduction ratio 𝑟 ,
while a a convolutional layer with parameter𝑊𝑢 acts as channel-

upscaling layer to increase dimension with ratio 𝑟 .
Finally, the 𝑐-th channel feature map 𝑢𝑐 is rescaled by the final

channel statistics 𝑠

�̃�𝑐 = 𝑠𝑐 · 𝑢𝑐 , (5)

where 𝑠𝑐 refers to the scaling factor.With such channel attention, we

can explicitly modelling channel interdependencies to recalibrate

features.

3.2.2 Feature Pooling Block. Recent works [4, 46] have introduced

channel attention for image super-resolution, and obtained re-

markable performance. However, these works exploit only first- or

second-order feature statistics while ignoring the rich higher-order

feature statistics, which are also shown to be helpful to improve

discriminative ability of CNNs [19, 38].

Base on such observations, here, we design feature pooling block

to exploit a mixture of 𝑘-order (e.g., k=1,2,3,4) features statistics,
which is more suitable to represent the global distribution of each

channel. Specifically, we take first-order statistics: Average, second-

order statistics: Standard Deviation, third-order statistics: Skewness

and forth-order statistics: Kurtosis into consideration. Given an in-

put feature map𝑈 ∈ R𝐻×𝑊 ×𝐶 , by shrinking𝑈 in spatial dimension,

the 𝑐-th element of 𝑘-order channel descriptor 𝑧2 is calculated by

𝑧1,𝑐 = 𝜇𝑐 = 𝐹1 (𝑢𝑐 ) =
1

𝐻 ×𝑊

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝑢𝑐 (𝑖, 𝑗), (6)

𝑧2,𝑐 = 𝐹2 (𝑢𝑐 ) =
1

𝐻 ×𝑊

𝐻∑
𝑖=1

𝑊∑
𝑗=1

(𝑢𝑐 (𝑖, 𝑗) − 𝜇𝑐 )
2 , (7)

𝑧3,𝑐 = 𝐹3 (𝑢𝑐 ) = E

[(
𝑈 − 𝜇

𝜎

)3]
, (8)

𝑧4,𝑐 = 𝐹4 (𝑢𝑐 ) = E

[(
𝑈 − 𝜇

𝜎

)4]
, (9)



where 𝐹𝑘 (·) denotes𝑚-order feature pooling function (𝑘 = 1, 2, 3, 4).
𝑢𝑐 (𝑖, 𝑗) is the pixel at position (𝑖, 𝑗) of 𝑐-th channel; where 𝜇 is the

mean and 𝜎 is the standard deviation of 𝑈 , E is the expectation

operator and can be calculated by E(𝑋 ) =
∑𝑘
𝑖=1 𝑝𝑖𝑥𝑖 , 𝑋 is a random

variable occurring with probabilities 𝑝1, 𝑝2, · · · , 𝑝𝑘 .
Natural images often contain various objects and different tex-

ture, resulting in very complex distributions of convolutional acti-

vations. As a result, a single 𝑘-order statistic cannot fully capture

statistical information of features. A natural idea to overcome the

above limitation is to ensemble multiple 𝑘-order statistics. Thus,
we attempt to mix different 𝑘-order statistics with a feature gating

mechanism to capture more complex statistical information. How

to design the gate becomes a very important problem. First, in order

to prevent the mode from collapsing into trivial solutions that are

independent of input features, such as always choosing certain

statistics, the randomness of the gate is very important. Second,

the gate needs to make a discrete decision while still providing

gradient to estimate relevance. Third, the computing cost of the

gate should be relatively low. To this end, we design a feature gating

block to make our MAN adaptive to varying image contents and

degradations.

3.2.3 Feature Gating Block. As shown in Fig. 1, the feature gating

block contains two parts: the first part estimates the relevance of

these different 𝑘-order statistics, while the second part makes a

discrete decision by sampling using Gumbel-Softmax.

Relavance Estimation. The aim of the gate’s first part is to

estimate the relevance of different higher-order statistics given

the input features map𝑈 ∈ R𝐻×𝑊 ×𝐶 . Based on recent study [33],

much of the information in features is caught by the statistics of

channel interdependencies. Therefore, we just utilize channel-wise

statistics aggregated by global average pooling, which is same as

Equ. (6) and compresses the input feature map into a 1 × 1 × 𝐶
channel descriptor. To fully capture the interdependencies between

channels, a non-linear function of two fully-connected layers con-

nected with a ReLU [28] activation function is added. The output

𝜔 of this part is the relevance score of different statistics, a vector

containing unnormalized weights for choosing from statistics of

different orders.

𝜔 = 𝐹 (𝑧,𝑊 ) =𝑊2𝛿 (𝑊1𝑧), (10)

where 𝑧 is the channel descriptor, 𝛿 is the ReLU function,𝑊1 ∈

R
𝑑×𝐶 ,𝑊2 ∈ R4×𝑑 are parameters of two fully-connected layers and

𝑑 is the dimension of the hidden layer.

Gumbel Sampling. The aim of the second part is to make a

discrete decision based onvance scores.

We choose the Gum the relevance scores. A simple attempt is

to choose the maximum of the relevance scores. However, this ap-

proach loses the uncertainty of probability and is not differentiable.

Therefore, adding noise is a commonway to introduce such random-

ness. Then we can choose from these four options proportional to

the relebel distribution for the noise, because it has a great property

named Gumbel-Max trick [9]. Let 𝑣 be a𝐾-dimensional discrete ran-

dom variable with probabilities [𝛼1, 𝛼2, ..., 𝛼𝐾 ]. The Gumbel-Max

trick offers a simple and efficient way to draw samples 𝑣 from a

discrete distribution with probabilities 𝛼

𝑣 = 𝑜𝑛𝑒_ℎ𝑜𝑡

(
argmax

𝑘
[𝐺𝑘 + log𝛼𝑘 ]

)
, (11)

where 𝐺1,𝐺2, ...,𝐺𝐾 are a sequence of i.i.d. Gumbel random vari-

ables, which can be sampled using inverse transform sampling by

𝑍 ∼ Uniform(0, 1) and computed by 𝐺 = − log(− log(𝑍 )).
A drawback of this approach is that the argmax operation is

not continuous. Replacing the argmax operation with a softmax

function, a continuous relaxation of the Gumbel-Max trick has been

proposed [14]. Then, samples from the Gumbel-Softmax relaxation

can be expressed as

𝑣 = 𝑜𝑛𝑒_ℎ𝑜𝑡 (softmax [(Gk + log𝛼k)/𝜏]) , (12)

where 𝜏 is the temperature of the softmax.

4 EXPERIMENTS

4.1 Setup

To verify the effectiveness of our MAN, we apply our method to

different image datasets on different image restoration tasks, in-

cluding image denoising, demosaicing, and super-resolution. Fol-

lowing the previous works [27, 45], we set the same settings for

image denoising, demosaicing, compression artifacts reduction, and

super-resolution for fair comparison. Specifically, we use 800 high-

resolution traing images fromDIV2K dataset [31] as training set. All

results are evaluated by PSNR and SSIM [37] metrics on Y channel

of transformed YCbCr space.

In our MAN, the kernel size and channel number of all convolu-

tional layers is set to 3×3 and𝐶 = 64 except for those in higher-order

channel attention module, which use 1 × 1 convolutional layer and

set 𝐶 = 32. Our MAN contains 32 residual blocks (RBs) in total,

which contain one mix-order channel attention (MOCA) module in

each RB. For our MOCA, we set order factor as 𝑘 = 4 empirically.

When training, we augment the 800 training images by randomly

rotating 90◦, 180◦, 270◦ and horizontally flipping. In each batch, we

crop the input as patches with size 48 × 48. Our model is trained

by ADAM optimizer [16] with 𝛽1 = 0.9, 𝛽2 = 0.99, and 𝜖 = 10−8.

The learning rate is initialized with 10−4 and then decreased to

half every 200 epochs. We implement our models on the Pytorch

framework [29] on Nvidia 2080Ti GPUs.

4.2 Ablation Study

Table 1: PSNR results (×4) of MAN w/o FGB with varying 𝑘 .

Method Set5 Set14 BSD100 Urban100 Manga109

MAN w/o FGB (𝑘 = 1) 31.898 28.415 27.460 25.682 29.885

MAN w/o FGB (𝑘 = 2) 32.060 28.430 27.469 25.722 29.990

MAN w/o FGB (𝑘 = 3) 32.104 28.474 27.508 25.833 30.162

MAN w/o FGB (𝑘 = 4) 32.094 28.446 27.501 25.845 30.142

4.2.1 Effects of high-order feature statistics. To explore the roles

of high-order feature statistics, we test our MAN without feature

gating block (FGB) (denoted as MAN w/o FGB) on image super-

resolution tasks (4×), and report the PSNR results in Table 1, from

whichwe see that𝑘 = 2, 3, 4 obtains consistently better performance

than 𝑘 = 1. This indicates that high-order feature statistics are also

helpful in restoring image structures. Besides, 𝑘 = 3 obtains the best



results on Set5 and Set14, while 𝑘 = 4 performs best on Urban100,

which implies that the optimal 𝑘 is related to image contents.

Table 2: PSNR results(×4) of MAN with MOCA with varying

𝑘 .

Method Set5 Set14 BSD100 Urban100 Manga109

MAN w/ MOCA (𝑘 = 1) 31.898 28.415 27.460 25.682 29.885

MAN w/ MOCA (𝑘 = 2) 32.130 28.480 27.513 25.863 30.086

MAN w/ MOCA (𝑘 = 3) 32.138 28.518 27.529 25.879 30.225

MAN w/ MOCA (𝑘 = 4) 32.144 28.519 27.534 25.928 30.267

Table 3: PSNR results (×4) of normalization in MOCA.

Set5 Set14 BSD100 Urban100 Manga109

MOCA w/ normalization 32.097 28.465 27.491 25.807 30.024

MOCA w/o normalization 32.144 28.519 27.534 25.928 30.627

4.2.2 Effects of MOCA. Similarly, we test MAN with MOCA (de-

noted as MAN w/ MOCA) on image super-resolution tasks (4×),

and report PSNR results on Table 2, from which we see that 𝑘 = 4

obtains the best results on different datasets. Thus, we set 𝑘 = 4 in

MAN empirically. Moreover, we can find that 𝑘 = 2, 3, 4 performs

better than 𝑘 = 1. This is mainly because natural images usually

contain rich texture structures with complex statistical characteris-

tics. Thus, our MOCA with a mixture of 𝑘-order feature statistics
allows MAN to focus on more informative features, thus improving

the feature expression ability.

4.2.3 Effects of normalization in MOCA. In our MOCA, different

𝑘-order statistics may cover a large range of amplitude, which may

influence the final performance. To answer this question, we test our

MOCA with/without normalization, and report the PSNR results

in Table 3, from which we can see that MOCA with normaliza-

tion obtains consistently worse performance than MOCA without

normalization. The possible reason is that the amplitude of differ-

ent 𝑘-order statistics also contain rich latent semantic information,

while normalization can degrade such information. Therefore, our

MOCA does not perform normalization operations in our MAN.

4.3 Image Denoising

For image denoising, we follow the settings as in RNAN [45], and

evaluate our MAN on standard benchmarks, including Kodak24

(http://r0k.us/graphics/kodak/), BSD68 [26], and Urban100 [13].

Specifically, noisy images are produced by adding additive white

Gaussian noise (AWGN) with standard deviation 𝜎 = 10, 30, 50, 70.
We compare our MAN with state-of-the-art image denoising meth-

ods, including CBM3D [3], TNRD [2], RED [25], DnCNN [39], Mem-

Net [30], IRCNN [40], FFDNet [41], RNAN [45].

All the results are reported in Table 4, from which we can see

that our MAN obtains the best performance at different datasets

and noise levels in most cases. Our mix-order channel attention

allows networks to focus on informative parts, thus being effective

in image denoising. Compared with RNAN, which is considered as

one of the most powerful denoising methods, our MAN achieves

consistently better results. For example, our MAN can achieve over

0.31 and 0.25 dB gains over RNAN at 𝜎 = 50 and 𝜎 = 70. These

observations demonstrate the effectiveness of our proposed mix-

order channel attention.

For visual quality, we evaluate different denoising methods on

BSD68 and Urban100, and show visual results in Fig. 3, from which

we can observe that our MAN with mix-order channel attention

produces better visual quality with recovering more image details.

Take images ‘223061’ and ‘img044’ as an example, our MAN gener-

ates the most faithful restoration results (e.g., lines ) than others.

4.4 Image Demosaicing

Following the same settings in RNAN [45], we conduct experi-

ments on McMaster [40], Kodak24, BSD68, and Urban100 for image

demosaicing. We compare our MAN with recent state-of-the-art de-

mosaicing methods: IRCNN [40] and RNAN [46], which work well

in demosaicing. All the results are listed in Table 5, from which we

see that mosaic corruptions significantly degrade the image quality.

IRCNN and RNAN remove mosaic corruptions to some degree, and

thus obtain relatively high-quality restoration. By contrast, our

MAN obtains significantly better performance than IRCNN and

RNAN on different datasets. Compared with RNAN, the PSNR gains

of our MAN is at least 0.30 dB on average, and even up to nearly

1 dB on Urban100. These observations demonstrate the effective-

ness of our mix-order channel attention in handling the mosaic

corruptions.

The visual results are shown in Fig. 4, fromwhichwe observe that

our MAN and RNAN can effectively reduce mosaic degradations

and produce similar visual results, both of which have significantly

better visual quality than IRCNN. Compared with RNAN, ours

produces less artifacts, thus leading to better visual quality. With

mix-order channel attention, our MAN eliminates most of artifacts

and reconstructs more accurate color.

4.5 Image Super Resolution

We further apply our MAN on image super-resolution (SR), and

compare MAN with other state-of-the-art SR methods: LapSRN

[17], MemNet [30], SRMDNF [39], DBPN [10] , RDN [46], EDSR

[21], NLRN [23] SRFBN [20], OISR [11], RCAN [44], and RNAN [45].

Besides, we introduce self-ensemble strategy to further improve

the performance of our MAN (denoted as MAN+).

All the results of compared SR methods are reported in Table 6,

fromwhichwe see that ourMAN+ achieves the best performance on

different benchmarks in most cases. Without self-ensemble strategy,

our MAN , RNAN and RCAN are the three best SR methods, and

outperforms other SR methods. Note that the parameter number

of our MAN is 3.87 M, far smaller than 7.5 M in RNAN, and 16 M

in RCAN. Specifically, the network depth of our MAN (about 66

convolutional layers ), is far shallower than that of RNAN (about 120

convolutional layers) and RCAN (about 400 convolutional layers).

It implies that our mix-order channel attention can make full use

of informative features. These observations verify the effectiveness

of our MAN with mix-order channel attention.

We also compare visual results of different SRmethods. As shown

in Fig. 5, we can observe that our MAN and RCAN produce visually

pleasing results with finer image structures, and outperform other

methods. For example, RNAN recovers lines in windows areas of

‘img_025’ with wrong direction, while our MAN produce more



Table 4: Quantitative evaluation of state-of-the-art approaches on color image denoising. Best results are highlighted

Method
Kodak24 BSD68 Urban100

10 30 50 70 10 30 50 70 10 30 50 70

CBM3D 36.57 30.89 28.63 27.27 35.91 29.73 27.38 26.00 36.00 30.36 27.94 26.31

TNRD 34.33 28.83 27.17 24.94 33.36 27.64 25.96 23.83 33.60 27.40 25.52 22.63

RED 34.91 29.71 27.62 26.36 33.89 28.46 26.35 25.09 34.59 29.02 26.40 24.74

DnCNN 36.98 31.39 29.16 27.64 36.31 30.40 28.01 26.56 36.21 30.28 28.16 26.17

MemNet N/A 29.67 27.65 26.40 N/A 28.39 26.33 25.08 N/A 28.93 26.53 24.93

IRCNN 36.70 31.24 28.93 N/A 36.06 30.22 27.86 N/A 35.81 30.28 27.69 N/A

FFDNet 36.81 31.39 29.10 27.68 36.14 30.31 27.96 26.53 35.77 30.53 28.05 26.39

RNAN 37.24 31.86 29.58 28.15 36.43 30.63 28.27 26.83 36.59 31.50 29.08 27.45

MAN 37.32 31.91 29.63 28.14 36.50 30.70 28.34 26.87 36.75 31.76 29.41 27.71

BSD68: 223061

HQ Noisy (𝜎=50) CBM3D [3] DnCNN [39]

IRCNN [40] FFDNet [41] RNAN [45] Ours

Urban100: img044

HQ Noisy (𝜎=50) CBM3D [3] DnCNN [39]

IRCNN [40] FFDNet [41] RNAN [45] Ours

Urban100: img096

HQ Noisy (𝜎=50) CBM3D [3] DnCNN [39]

IRCNN [40] FFDNet [41] RNAN [45] Ours

Figure 3: Visual comparison for color image denoising with noise level 𝜎 = 50

faithful results. These results further demonstrate the effectiveness

of our MAN with mix-order channel attention.

4.6 Model Size Analyses

Take image denoising as an example, we compare the model size

of our MAN with other advanced image denoising approaches

in Table 7, from which we can observe that our MAN with 32



Table 5: Quantitative evaluation of state-of-the-art approaches on color image demosaicing. Best results are highlighted

Method
McMaster18 Kodak24 BSD68 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Mosaiced 9.17 0.1674 8.56 0.0682 8.43 0.0850 7.48 0.1195
IRCNN 37.47 0.9615 40.41 0.9807 39.96 0.9850 36.64 0.9743
RNAN 39.71 0.9725 43.09 0.9902 42.50 0.9929 39.75 0.9848
MAN 40.05 0.9739 43.37 0.9905 42.90 0.9934 40.69 0.9851

Table 6: Quantitative results on SR benchmark datasets. The best results and second results are highlighted and underline.

Method Scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LapSRN [17] ×2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740

MemNet [30] ×2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740

SRMDNF [42] ×2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761

DBPN [10] ×2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775

RDN [46] ×2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780

EDSR [21] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773

NLRN [23] ×2 38.00 0.9603 33.46 0.9159 32.19 0.8992 31.81 0.9249 – –

SRFBN [20] ×2 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779

OISR [11] ×2 38.21 0.9612 33.94 0.9206 32.36 0.9019 33.03 0.9365 – –

RCAN [44] ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786

RNAN [46] ×2 38.17 0.9611 33.87 0.9207 32.32 0.9014 32.73 0.9340 39.23 0.9785

MAN ×2 38.26 0.9614 34.14 0.9225 32.37 0.9021 33.12 0.9369 39.23 0.9785

MAN+ ×2 38.31 0.9616 34.17 0.9230 32.42 0.9026 33.34 0.9385 39.51 0.9789

LapSRN [17] ×3 33.82 0.9227 29.87 0.8320 28.82 0.7980 27.07 0.8280 32.21 0.9350

MemNet [30] ×3 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369

SRMDNF [42] ×3 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403

RDN [46] ×3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484

EDSR [21] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476

NLRN [23] ×3 34.27 0.9266 30.16 0.8374 29.06 0.8026 27.93 0.8453 - -

SRFBN [20] ×3 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481

OISR [11] ×3 34.72 0.9297 30.57 0.8470 29.29 0.8103 28.95 0.8680 - -

RCAN [44] ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499

MAN ×3 34.79 0.9300 30.59 0.8472 29.28 0.8106 28.91 0.8671 34.22 0.9489

MAN+ ×3 34.86 0.9306 30.72 0.8491 29.36 0.8118 29.18 0.8711 34.58 0.9506

LapSRN [17] ×4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900

MemNet [30] ×4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942

SRMDNF [42] ×4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024

DBPN [10] ×4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

RDN [46] ×4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

EDSR [21] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

NLRN [23] ×4 31.92 0.8916 28.36 0.7745 27.48 0.7306 25.79 0.7729 - -

SRFBN [20] ×4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160

OISR [11] ×4 32.53 0.8992 28.86 0.7878 27.75 0.7428 26.79 0.8068 - -

RCAN [44] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

RNAN [46] ×4 32.49 0.8982 28.83 0.7878 27.72 0.7421 26.61 0.8023 31.09 0.9149

MAN ×4 32.58 0.8992 28.79 0.7871 27.73 0.7424 26.70 0.8046 31.01 0.9154

MAN+ ×4 32.69 0.9007 28.93 0.7895 27.81 0.7440 26.95 0.8097 31.42 0.9189

Table 7: Model size comparison

Methods RED DnCNN MemNet RNAN MAN

Parameters 4131K 672K 677K 7409K 3877K
PSNR (dB) 26.40 28.16 26.53 29.15 29.40

residual blocks and mix-order channel attention modules obtains

the best denoising performance with a much lighter architecture.

Compared with the state-of-the-art RNAN, our MAN has achieved

significantly better results with much smaller model size. Such

observations demonstrate the great superiority of our MAN with

mix-order channel attention module.

5 CONCLUSIONS

In this paper, we propose deep mix-order attention networks (MAN)

for accurate image restoration. The networks is built on stacking

residual blocks and mix-order channel attention modules (MOCA),

which extract attention-aware features that capture rich feature



Urban100: img_026 HQ Mosaiced IRCNN [40] RNAN [45] Ours

Figure 4: Visual image demosaicing results

Figure 5: Visual comparison for 4× SR on Urban100 dataset

Urban100 (4×):
img_04

HR Bicubic LapSRN [17] EDSR [21] DBPN [10]

OISR [11] RDN [46] RCAN [44] RNAN [45] Ours

Urban100 (4×):
img_025

HR Bicubic LapSRN [17] EDSR [21] DBPN [10]

OISR [11] RDN [46] RCAN [44] RNAN [45] Ours

Urban100 (4×):
img_093

HR Bicubic LapSRN [17] EDSR [21] DBPN [10]

OISR [11] RDN [46] RCAN [44] RNAN [45] Ours

statistical information. Furthermore, we design feature gatingmech-

anism to adapt our MAN to varying image contents and degrada-

tions. Experiments demonstrate the effectiveness of our MAN on

image restoration tasks with more visually pleasing results.
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