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ABSTRACT
Currently, massive video inference tasks are processed through
edge-cloud collaboration. However, the diverse scenarios make it
difficult to allocate the inference tasks efficiently, resulting in many
wasted resources. In this paper, we propose a joint-aware video
processing (JAVP) architecture for edge-cloud collaboration. First,
we develop a multiscale complexity-aware model for predicting task
complexity and determining its suitability for edge or cloud servers.
The task is subsequently efficiently scheduled to the appropriate
servers by integrating complexity with an adaptive resource-aware
optimization algorithm. For input tasks, JAVP can dynamically and
intelligently select the most appropriate server. The evaluation
results on public datasets show that JAVP can improve the through-
put by more than 70% compared to traditional cloud-only solutions
while meeting accuracy requirements. And JAVP can improve the
accuracy by 3%-5% and reduce delay and energy consumption by
16%-50% compared to state-of-the-art edge-cloud solutions.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Computer
systems organization→ Real-time system architecture.
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1 INTRODUCTION
Over the years, the widespread applications of Internet of Things
(IoT) and deep learning has led to the gradual emergence of the
Internet of Everything (IoE) [20], capturing the attention of the
general public. IoT devices generate a vast amount of data and
video data is progressively assuming paramount significance, with
the proportion reaching 89% in 2025 [1]. Many cities around the
world deploy millions of surveillance cameras and use deep neural
network (DNN) models to process the video data [18, 41]. Cloud
servers can guarantee high accuracy by deploying complex DNN
models. However, for the exponentially growing surveillance video
data, it is difficult to satisfy tasks with low delay requirements if
all tasks are uploaded to the cloud for processing due to limited
bandwidth resources [7]. To save bandwidth and ensure real-time
video processing, a large amount of video data flows from the cloud
to the edge side [5]. However, edge servers with limited resources
can usually only deploy small DNN models [45], which is difficult
to meet the accuracy requirements of complex tasks.

Recently, to improve the performance of video processing, edge-
cloud collaborative architecture [13] is becoming the mainstream
method, as shown in Figure 1. It can combine the powerful comput-
ing capability of cloud servers and the proximity communication
capability of edge servers [11]. It can provide lower delay and energy
consumption for task transmission and inference while ensuring ac-
curacy requirements [30]. For the required video processing, video
tasks must be continuously uploaded to the edge or cloud servers
[6] and then inferred and analyzed by the DNN. The exponential
growth of video data poses challenges in developing an efficient
edge-cloud collaborative decision scheme. Recent efforts have de-
veloped DNN inference offloading mechanisms [14, 17, 19, 38, 39]
where video tasks are transferred from the end to available resource-
rich servers for inference. However, the above methods rely heavily
on known video information and lack aware analysis of complex-
ity. In real scenarios, the large amount of video surveillance data
is complex and variable [9] (e.g., lighting, number of objects, and
weather). This poses a great challenge to edge-cloud collaborative
video processing under resource-constrained conditions.

In this paper, we propose a joint-aware video processing archi-
tecture for edge-cloud collaboration, named JAVP. To the best of
our knowledge, this is the first edge-cloud collaborative real-time

https://doi.org/10.1145/3581783.3613914
https://doi.org/10.1145/3581783.3613914
https://doi.org/10.1145/3581783.3613914


MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Zheming Yang et al.

End

Difficult Task

Edge 1 Edge 2 Edge n

Edge

Easy Task

Cloud

Small

DNN Complex DNN

…

…..

…
..

Figure 1: The illustration of edge-cloud collaborative architec-
ture. The input tasks are pre-processed to determine whether
to upload them to the edge or cloud server.

video processing architecture that supports both complexity-aware
and resource-aware. For real-time video analytics tasks, JAVP can
analyze their difficulty and resource situation by pre-processor. The
main goal of JAVP is to adaptively select the right server under
resource-constrained conditions through joint-aware and optimize
the tradeoff between video processing accuracy, delay, and energy
consumption. The main contributions of this paper can be summa-
rized as follows.
• To deeply analyze the scene characteristics of video tasks,
we propose a multiscale complexity-aware model, which is
developed through the renormalization group method. It can
predict the complexity based on the global and local features
of the task and divide the complexity into three levels 𝐶low,
𝐶medium, and 𝐶high.
• We model the difference between accuracy and energy con-
sumption as a utility function and develop an adaptive resource-
aware optimization algorithm. It can optimize the tradeoff
between accuracy, delay, and energy consumption under
resource-constrained conditions by combining complexity-
aware.
• We evaluate the performance of the proposed architecture
and compare it with the baseline method. The experimental
results show that JAVP can adaptively allot the input task to
the optimal server and optimize resource allocation through
joint-aware. It can reduce video processing delay and energy
consumption by 16%-50% without sacrificing accuracy.

The remainder of this paper is organized as follows. We first
summarize the related work in Section 2. We then explain the
research motivation in Section 3. In Section 4, the proposed JAVP
architecture is described in detail.We evaluate our proposedmethod
through extensive experiments in Section 5. Section 6 concludes
the paper and presents future work.

2 RELATEDWORK
2.1 Edge-cloud Collaboration for Inference

Offloading
Some researchers have proposed various edge-cloud collaboration
solutions based on task offloading. The works in [23, 33] try to
improve the scheduling strategy for edge-cloud collaboration from
the perspective of task priority analysis but ignore the tradeoff

between accuracy and resources. To reduce the delay, the authors
in [27] propose an edge-cloud collaborative inference scheduling
system based on time-aware. It can predict the inference time of
a DNN by characterizing the network and then determining the
processing server for the task by a scheduling algorithm. To re-
duce the bandwidth requirement, an object detection system based
on pipelined bidirectional tracking was proposed [25], which can
adaptively perform keyframe selection for different input videos.

Video data is typically very large and requires frequent transfers
to the edge and cloud servers. The simultaneous upload of large-
scale tasks can affect the accuracy and real-time of video processing.
Offloading video tasks from the end side to edge or cloud servers is
a critical step in computationally intensive video processing. The
works in [35] describe an edge-cloud collaboration system for real-
time querying of large-scale video streams. They use an intelligent
task allocator to balance the load between different compute nodes
and improve the performance of real-time queries. In addition, the
quality of the tasks is emphasized and divided according to the
performance of the task model [44]. They develop a polynomial
time algorithm based on task forest to solve this problem. To ensure
the accuracy of video processing, the authors in [29] propose a
dynamic adaptive task offloading framework that jointly considers
the network bandwidth and the parameter configuration of the
video content. It can maximize the DNN inference accuracy by
dynamically adjusting the video bitrate and resolution. Due to the
complexity of tasks, the above methods are difficult to achieve
efficient edge-cloud collaborative task offloading with the current
task information.

2.2 Edge-cloud Collaboration for Resource
Allocation

Resource allocation in edge-cloud collaboration is crucial to achiev-
ing the tradeoff between accuracy, delay, and energy consumption
for DNN inference. For the resource-constrained problem, the video
processing algorithm needs to be optimized to reduce the compu-
tational volume. The frame masking mechanism [26] reduces the
resource consumption of video processing by retaining only those
regions that may contain objects of interest. A pareto-optimal trade-
off between accuracy and bandwidth is then achieved by controlling
the masked portion of the frames and the video resolution. Appeal-
Net [22] predicts whether input data can be transmitted to the edge
by bidirectional neural network architecture. It explicitly considers
the inference difficulty and optimizes the tradeoff between accuracy
and energy consumption of task processing. Unbalanced resource
allocation makes video processing suffer from significant inefficien-
cies. The authors in [42] propose a resource scheduling framework
that reduces costs by aggregating a number of dispersed video tasks
and assigning them to fewer preselected nodes. However, this ap-
proach may affect the final inference accuracy when the task is
complex.

In addition, some works consider how to rationally allocate
computing and bandwidth resources between the edge and cloud
servers to achieve optimal video processing efficiency. The authors
in [36] propose a deep reinforcement learning-based approach that
improves the efficiency of resource allocation between edge and
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(a) Edge, Accuracy: 0.79, Cost: 1.00 (b) Cloud, Accuracy: 0.82, Cost: 1.53

(c) Edge, Accuracy: 0.63, Cost: 1.21 (d) Cloud, Accuracy: 0.76, Cost: 1.74

Figure 2: The inference results for different tasks on edge
and cloud. The (a) and (b) are easy tasks, and the (c) and (d)
are difficult tasks. Simple tasks are more suitable at the edge,
and the cloud is suitable for processing difficult tasks.

cloud servers through dynamic DNN model selection and infer-
ence load optimization. The authors in [15] model the dynamic
decision-making of collaboration strategies as an online optimiza-
tion problem. The resource consumption of edge-cloud collabora-
tive video processing is then optimized by a budget-constrained
multi-armed bandit algorithm. NestDNN [12] is a framework that
takes the dynamics of runtime resources into account. It dynam-
ically selects the best resource accuracy tradeoff for each DNN
model to match the model’s resource requirements with the sys-
tem’s available resources. However, in some complex scenarios, the
above methods do not analyze the difficulty of the tasks and cannot
meet the requirements of variable tasks.

3 MOTIVATION
This section first analyzes the differences of existing object detec-
tion tasks under different servers, mainly including task processing
accuracy and energy consumption cost. Then we show our mea-
surement results on actual servers and describe the necessity and
feasibility of JAVP.

We take the object detection task of traffic scene as an example
to measure in the UA-DETRAC dataset [37]. The detection objects
include cars, buses, and persons. Then we implement YOLOv5 [2]
on NVIDIA Jetson Xavier NX and NVIDIA A100 GPU. NVIDIA
Jetson Xavier NX is used as an edge server and deployed with
YOLOv5s, and NVIDIA A100 GPU is used as a cloud server and
deployed with YOLOv5x. The number of DNNmodel parameters on
the cloud server is about 10 times more than that of the edge server,
the test results are shown in Figure 2. Where accuracy is calculated
by mAP50, which is the mean average precision of multiple objects
when the threshold of Intersection over Union (IoU) is greater
than 0.5. The cost is represented by the energy consumption during
inference and is normalized. It is evident that the inference accuracy
is higher on the cloud server, but it is also accompanied by more
cost. On the other hand, inference on edge servers is less accurate

(a) The relationship between accuracy re-
quirements and cost at the edge

(b) The relationship between accuracy re-
quirements and cost at the cloud

Figure 3: The results show that a large difference in the cost
of different accuracy requirements and the effect of different
servers on a video task is different.

but also costs less. Further, we find that different scenarios have a
huge impact on the inference process of edge-cloud collaboration.
For example, the task in Figure 2(a) achieves good results on edge
servers due to its low complexity. In contrast, the task in Figure 2(c)
is more suitable for uploading to the cloud for processing. The high
complexity leads to poor processing results on edge servers.

Traditional solutions largely ignore the complex diversity of
video data, which results in huge cost wastage. For example, many
simple tasks are incorrectly offloaded to the cloud server, thereby
incurring supplementary costs. However, the video tasks in real-
world scenarios are complex and variable, primarily from varying
number of objects, distances, light, etc. [8]. This has a great impact
on the video processing efficiency of the edge-cloud collaborative
architecture. Furthermore, considering the limited resources of edge
servers, it becomes crucial to strategically allocate these resources
to enhance the processing efficiency of video data, especially for
computationally intensive tasks [10]. Figure 3 illustrates the rela-
tionship between video processing cost and accuracy requirements.
To obtain optimal edge-cloud collaborative inference performance,
a method that can efficient analysis the complexity of video tasks
is necessary. Then a resource optimization method is used to fur-
ther improve the video processing efficiency. Therefore, we will
explore the edge-cloud collaborative inference method based on
joint-aware to solve the above video optimization challenge.

4 THE PROPOSED JAVP ARCHITECTURE
In this section, we present JAVP, an edge-cloud collaborative infer-
ence architecture based on joint-aware. Section 4.1 shows the over-
all design of JAVP. Then, the multiscale complexity-aware analysis
module is introduced in Section 4.2 and the adaptive resource-aware
optimization module is described in Section 4.3.

4.1 Overall Design
The architecture mainly includes end cameras, edge servers, and
cloud servers. Before using this architecture, complex DNN models
need to be deployed on the cloud, and small DNNmodels at the edge
for inference of video tasks. The core of the JAVP is the complexity-
aware analysis module and the resource-aware optimization mod-
ule. Figure 4 shows the overall workflow of the JAVP architecture.
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Figure 4: The workflow of the proposed JAVP architecture.

First, the input video is pre-processed in the complexity-aware
analysis module. To better describe the scene complexity, we use a
multiscale fusion approach to obtain the complexity of the video
task. Then the appropriate server is decided based on the com-
plexity of the video task. If the complexity is greater than the set
threshold 𝐶high, the video task is uploaded to the cloud server for
processing. If it is less than the 𝐶low, it is processed on the edge
server. Otherwise, it is combined with the current resource situa-
tion to make a comprehensive decision on whether to upload to the
edge or cloud server. In addition, if the inference accuracy on the
edge meets the requirements, the result will be output, otherwise it
will be uploaded to the cloud for in-depth processing.

Due to the presence of multiple servers, the resource allocation
strategy is critical to the overall processing efficiency when the
number of tasks increases [43]. We deploy the resource-aware opti-
mization module and comprehensively analyze computing, commu-
nication, and caching resources. Overall, JAVP can reduce energy
consumption and ensure accuracy through the complexity-aware
analysis module. And the resource-aware optimization module is
used to guarantee low delay and reduce energy consumption. Fi-
nally, the optimal tradeoff between accuracy, delay, and energy
consumption in real-time video analytics is achieved through edge-
cloud collaborative joint-aware under resource-constrained.

4.2 Multiscale Complexity-Aware Analysis
The complexity-aware analysis module is mainly used to extract
the structural features of input tasks and provide decision informa-
tion for edge-cloud collaboration. The structural complexity of an
image is the key information used to express the characteristics of
a scene. By characterizing and quantifying the complexity of an
image, the intuitive feeling of "difficult" and "simple" can be effec-
tively reflected. The renormalization group (RG) has been proven
to quantitatively describe the complexity of images by relating in-
formation between different scales [3]. RG is a method to examine
system changes at different scales [21]. Based on this, we propose a
complexity calculation method based on multiscale feature fusion,
as shown in Figure 5. The global complexity of the image is first

analyzed by RG transformation. The RG transformation is a mathe-
matical method employed to address the issue of scale variations
in physical systems. It enables the mapping of the original system
to a new system while preserving its essential physical character-
istics. Furthermore, mutual information and contrast differences
are computed to quantify the local complexity. Finally, the results
of global complexity and local complexity are combined to get the
input task’s scene complexity: 𝐶 = 𝛼 ·𝐶𝑔 + 𝛽 ·𝐶𝑙 , where 𝛼 and 𝛽
are the weights of global complexity and local complexity.

R
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(a) Global complexity-aware analysis
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(b) Local complexity-aware analysis

Figure 5: The overview of complexity-aware analysis.

4.2.1 Global Complexity. First, a new feature binary is formed by
introducing the location information of image pixels, denoted as
(𝑤,ℎ).Where𝑤 denotes the row index of the pixel andℎ denotes the
column index of the pixel. A scale can be considered as a function
𝑓 (𝑥) defined on some image domain 𝜙 . We then compute the RG
transformation by means of the Kadanoff-Baym [31] equation:

𝑅𝐺𝜆 =| ⟨𝑓𝜆 (𝑥) | 𝑓𝜆+𝑑𝜆 (𝑥)⟩ −
1
2 (⟨𝑓𝜆 (𝑥) | 𝑓𝜆 (𝑥)⟩ + ⟨𝑓𝜆+𝑑𝜆 (𝑥) | 𝑓𝜆+𝑑𝜆 (𝑥)⟩) |=1

2
∫
𝜙
(𝑓𝜆+𝑑𝜆 (𝑥) − 𝑓𝜆 (𝑥))2 𝑑𝑥

(1)

where 𝜆 is the scale of the image, and ⟨𝑓 (𝑥) | 𝑔(𝑥)⟩ =
∫
𝜙
𝑑𝑥 𝑓 (𝑥)𝑔(𝑥)

represents the non-normalized overlap of two images of different
scales. During each iteration of the renormalization procedure, the
image is partitioned into blocks of dimensions 𝑅 × 𝑅. Each of these
blocks is then replaced by a single pixel whose state is determined
by 𝑠𝑤ℎ (𝑛) = 1/𝑅2 ∑

𝑏

∑
𝑚 𝑠𝑅𝑤+𝑚,𝑅ℎ+𝑏 (𝑛 − 1), where 𝑏 and 𝑚 in-

dices enumerate the pixels within the same block and 𝑛 denotes the
number of iterations. This process is repeated multiple times, gener-
ating a series of renormalized images at varying resolutions. With
this series, we are able to calculate the degree of overlap between
images at different scales:

𝑂𝑛,𝑛−1 =
1

𝐿2
𝑛−1

𝐿𝑛∑︁
𝑤=1

𝐿𝑛∑︁
ℎ=1

s𝑤ℎ (𝑛) ·
𝑅∑︁
𝑚=1

𝑅∑︁
𝑏=1

s𝑅𝑤+𝑚,𝑅ℎ+𝑏 (𝑛 − 1)

=
𝑅2

𝐿2
𝑛−1

𝐿𝑛∑︁
𝑖=1

𝐿𝑛∑︁
𝑗=1

s2
𝑤ℎ
(𝑛) = 𝑅2

𝐿2
𝑛−1
· 𝐿2
𝑛 ·𝑂𝑛,𝑛

(2)

where 𝑛 = 0 denotes the initial image, while 𝑂 (𝑛, 𝑛) represents
the overlap between the image at scale 𝑛 and its own self. Finally,
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the global complexity 𝐶𝑔 serves as an integral measure that takes
into account the features that arise at each subsequent scale. The
computation formula for 𝐶𝑔 is presented as follows:

𝐶𝑔 =

𝑁−1∑︁
𝑛=0

𝐶𝑛 =

𝑁−1∑︁
𝑛=0

����𝑂𝑛+1,𝑛 − 1
2
(
𝑂𝑛,𝑛 +𝑂𝑛+1,𝑛+1

) ���� (3)

4.2.2 Local Complexity. The local complexity of the input task
is represented by the difference between the object area and the
background area in the image.First, the object area is defined as
the region of interest (ROI) of the image and the rest as the back-
ground area. To characterize the spatial features, the pixel point
is introduced with information on the neighborhood of that point.
We use 𝑎 to denote the grayscale value of a pixel and 𝑒 to denote
the neighborhood mean grayscale value. The information entropy
is calculated as follows: 𝐻 = −∑𝑎 ∑𝑒 𝑃𝑎,𝑒 lg

(
𝑃𝑎,𝑒

)
. 𝑃𝑎,𝑒 is the prob-

ability of occurrence of a grayscale value in an image. The mutual
information is as follows: Δ𝐻 = 𝐻𝑜 +𝐻𝑏 −𝐻𝑜,𝑏 , where 𝐻𝑜 and 𝐻𝑏
are the information entropy of the object area and the background
area. 𝐻𝑜,𝑏 is the joint entropy of the object area and background
area. The difficulty in discerning the object from the background,
or the increase in local complexity, is directly proportional to the
reduction in mutual information.

Finally, the contrast difference between the object area and back-
ground area is calculated by summing the roots of squares as fol-
lows:

Δ𝜃 =
[
(𝜇𝑜 − 𝜇𝑏 )2 + 𝜎2

𝑜

] 1
2 (4)

where 𝜇𝑜 is themean grayscale of the object, 𝜇𝑏 is themean grayscale
of the background, and 𝜎𝑡 represents the grayscale standard de-
viation of the object. The smaller the contrast difference is, the
greater the complexity of the image localization. Overall, the local
complexity of the input task is𝐶𝑙 = 𝛽1 ·Δ𝐻 + 𝛽2 ·Δ𝜃 . Where 𝛽1 and
𝛽2 are the weights of mutual information and contrast difference.

4.3 Adaptive Resource-Aware Optimization
4.3.1 Problem Formulation. Weassume that𝑉 = {𝑣1, 𝑣2, · · · 𝑣𝑖 , · · · 𝑣𝐾 }
denotes the video tasks that complexity between 𝐶low and 𝐶high.
And 𝑌 =

{
𝑦1, 𝑦2, · · ·𝑦 𝑗 , · · ·𝑦𝑆

}
is the set of servers, where 𝑦𝑆 de-

notes the cloud server. For different input tasks, the appropriate
server can be selected for inference according to the current re-
source situation. Real-time processing of video tasks usually re-
quires low delay and costs a lot of energy consumption [12]. There-
fore, our goal is to satisfy the delay requirements while minimizing
the processing energy consumption and guaranteeing accuracy. In
addition, the accuracy requirements for most of the tasks are al-
ready satisfied in the complexity-aware analysis module. We define
the utility function as the weighted difference between accuracy
and energy consumption, incorporating the delay as a constraint
in the optimization problem formulation, which can be expressed
as follows:

max 1
𝑇

∑𝑇
𝑖=𝑡 (𝐴𝑡 − 𝜔𝐸𝑡 )

s.t. 𝐶1 : 𝐷𝑖,𝑡 ≤ 𝐷𝑞𝑖,𝑡 , 𝑖 ∈ {1, 2, · · ·𝐾} , 𝑡 ∈ 𝑇
𝐶2 :

∑𝑆
𝑗=1 𝑧

𝑗
𝑖,𝑡

= 1, 𝑧 𝑗
𝑖,𝑡

= {0, 1}, 𝑦 𝑗 ∈ 𝑌, 𝑡 ∈ 𝑇
𝐶3 :

∑𝐾
𝑖=1𝑈𝑖,𝑡 ≤ U𝑡 , 𝑡 ∈ 𝑇

(5)

where 𝐴𝑡 and 𝐸𝑡 are the accuracy and energy consumption at
time slot 𝑡 . 𝐷𝑖,𝑡 is the delay of task 𝑖 and 𝐷𝑞

𝑖,𝑡
is the delay re-

quirement. 𝑧 𝑗
𝑖,𝑡

indicates whether the 𝑖-th task is assigned to the
𝑗-th server, and 𝑈𝑖,𝑡 is the resource consumption of task 𝑖 and
U𝑡 is the available resource of servers. To address the problem
that multiple types of resources are difficult to coordinate uni-
formly [32], we build a heterogeneous resource metric model:𝑈 tri =
𝑈 comp (𝑣) ·𝑈 comm (𝑣) ·𝑈 cach (𝑣). The metric 𝑈 tri is the resource
pool of integration to computing, communication, and caching.
The weighting parameter 𝜔 is used to control the tradeoff between
accuracy and energy consumption. Constraint 𝐶1 ensures that the
delay requirements of each task are met. Otherwise, it will be as-
signed to a more resourceful server. Constraint𝐶2 ensures that only
one server is selected for tasks at each time slot 𝑡 . Constraint 𝐶3
means the resource by all tasks is less than or equal to the available
resource.

4.3.2 Solution Algorithm. Since the constraints include integer
vectors and continuous vectors, the objective function in Eq. (5)
is a combinatorial optimization problem. The assignment of the
optimal resource solution for each task has been proven to be an
NP-hard problem [4], necessitating the utilization of a heuristic
algorithm for its resolution. Inspired by the grey wolf optimizer
in [28], we conceptualize the aforementioned combinatorial opti-
mization problem as a collaborative foraging process within a gray
wolf pack. Accordingly, we propose an adaptive resource-aware
optimization algorithm to obtain approximate solutions. The opti-
mization procedure is outlined in Algorithm 1.

Algorithm 1: Adaptive Resource-Aware Optimization Al-
gorithm
Input:

The set of tasks 𝑉 , The set of servers 𝑌 ;
Output:

The resource allocation scheme 𝑍 ∗;
Procedure:
1: Initialize 𝑄 , 𝛿 , 𝐵, and𝑀
2: for each search task
3: Calculate average fitness function 𝐹 (𝑡)
4: Calculate 𝐷𝑖,𝑡 from the first three best ®𝑄
5: if 𝐷𝑖,𝑡 ≤ 𝐷𝑞𝑖,𝑡 then
6: 𝑍 ∗ ← 𝑧

𝑗
𝑖,𝑡

= 1
7: else
8: Updata 𝛿 , ®𝐵, and ®𝑀 , 𝑡 = 𝑡 + 1
9: end if
10: while 𝐴𝑖,𝑡 < 𝐴

𝑞

𝑖,𝑡
do

11: 𝑦 𝑗 = 𝑦𝐾
12: end while
13: end for
14: return 𝑍 ∗;

The key idea of the adaptive resource-aware optimization algo-
rithm is to use the optimization history to dynamically adjust the
strategy. It adjusts the optimization parameters mainly based on
the behavior in previous iterations and the average fitness value.
The average fitness is calculated as shown below:
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𝐹 (𝑡) =
∑
𝑡 ∈𝑇 𝐹 (𝑡)
𝑇

=

∑
𝑡 ∈𝑇 𝐴𝑡 + 𝜔𝐸𝑡

𝑇
(6)

Consider the matching relationship between task requirements
and available resources, it employs a resource-aware strategy to
assign the task to the most suitable server for processing. First,
it needs to quickly identify the server that can meet the delay
requirement and then determine whether the accuracy requirement
is met. If the edge server cannot meet the accuracy requirements of
the task, it is uploaded to the cloud server for processing. Among
the acceptable policies, the algorithm selects the solution with the
lowest energy consumption and returns the result. Specifically, to
better find the optimal solution, we introduce an adaptive factor
𝛿 = 2−2 1

e−1

(
e

𝑡
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 1

)
. 𝑡 is the current number of iterations and

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum number of iterations. In the optimization
process, the behavior of the search target is defined as follows:

®𝐺 =

��� ®𝑀 · ®𝑄𝑝 (𝑡) − ®𝑄 (𝑡)��� (7)

where ®𝑀 is a vector of random coefficients between [0,2], ®𝑄𝑝 is the
position vector of the target, and ®𝑄 denotes the current position
vector. The updated formula for the position vector is as follows:

®𝑄 (𝑡 + 1) = ®𝑄𝑝 (𝑡) − ®𝐵 · ®𝐺 (8)

where ®𝐵 = 2®𝛿 · ®𝑟1 − ®𝛿 , 𝑟1 is a random number between [0,1]. The
optimal resource allocation solution is eventually found through
iterative optimization.

In the above algorithm, a resource allocation scheme needs to be
determined for each task. In each round of iteration, the average
fitness value is updated based on historical information. Then the
solution with the highest fitness value is selected as the current
resource allocation result, which requires 𝐾 individual operations.
In the process of finding the optimal resource allocation scheme,
the execution of each task also needs to be considered. Therefore,
the complexity of the algorithm is 𝑂 (𝐾𝑆).

5 PERFORMANCE EVALUATION
In this section, we conduct extensive experiments to evaluate the
performance of the proposed JAVP architecture. We first describe
the specific setup of the experiments and then analyze the advan-
tages of our solution over the traditional cloud-only method. Finally,
we compare the performance of our method with several baseline
methods with edge-cloud collaboration.

5.1 Evaluation Setup
5.1.1 Datasets and Implementation Details. To evaluate our solu-
tion, we conduct object detection experiments on the UA-DETRAC
dataset[37] and DAWN dataset[16], with selected detection objects
including cars, buses, and persons. The UA-DETRACdataset is video
clips collected from surveillance cameras at traffic intersections,
with videos recorded at 25 frames per second. The DAWN dataset
consists of real-world images collected under a variety of adverse
weather conditions. It emphasizes diverse traffic environments, and
these data are divided into four groups of weather conditions: fog,
rain, sand, and snow.

We use one NVIDIA A100 GPU with 40 GB memory as the cloud
server and four NVIDIA Jetson Xavier NX with 8 GB memory as

edge servers. We use YOLOv5 as a DNN model, which is an open-
source project widely used for object detection. Specifically, we
directly use the pre-trained model on the COCO dataset [24]. Then,
two DNN models of different sizes are deployed on the edge server
and cloud server, refer to Section 3. According to the experiment
setup in [34], the energy consumption per unit of transmission
𝛾𝑖 is 0.5 × 10−5 J. In addition, all the above experiments are per-
formed under the environments of Ubuntu 18.04.3, Python 3.8.13,
and PyTorch 1.11.0.

5.1.2 Evaluation Metrics. We use the following metrics to evaluate
the performance of different methods.
• Accuracy: We evaluate the accuracy by the standard metric
mAP50 in object detection, which is the mean average preci-
sion of multiple objects when the threshold of IoU is greater
than 0.5.
• Delay: This includes complexity-aware analysis delay, trans-
mission delay, and inference delay. We get the total delay by
measuring the time between task input and the completion
of DNN inference.
• Energy consumption:We calculate the inference energy
consumption by multiplying the server power by the infer-
ence time of the task, and the transmission energy consump-
tion by multiplying 𝛾𝑖 by the size of the task.

5.1.3 Baseline Methods. We compare our solution with the follow-
ing three baseline methods.
• RDAP [33]: This is a resource deployment method based
on edge-cloud collaboration, which can optimize server re-
source allocation and task scheduling by task aggregation
and delay thresholds.
• DAO[29]: This a dynamic adaptive offloading method for
video analysis. Specifically, it improves video processing
efficiency by adjusting the video bitrate and resolution.
• Sniper[27]: This is an edge-cloud collaborative inference
schedulingmethod based on time-aware. It uses a non-intrusive
performance characterization network (PCN) to predict the
inference time of a DNN and guides task scheduling.

5.2 Evaluation Results
5.2.1 Joint-Aware Advantage Analysis. To validate the advantages
of joint-aware analysis, we first run the proposed multiscale feature
fusion model on the training set and get the complexity thresholds
𝐶low and 𝐶high. The range of values for the task accuracy require-
ments is [0.5,0.8]. Then the throughput under different bandwidths
is compared on the test set, as shown in Figure 6. It can be seen
that JAVP can improve the throughput by more than 70% compared
to the traditional cloud-only solution. This result is in line with
our expectations, as it can reduce the waste of resources caused
by uploading simple tasks to the cloud server for processing. The
accuracy of the complexity analysis is critical. Therefore, we evalu-
ate the performance of the complexity analysis module indirectly
through the task success rate. We show the success rates for meet-
ing the task accuracy requirements in Table 1. We observe that the
cloud-only solution can meet the accuracy requirements of 93%
and 85% of tasks on different datasets. And JAVP achieves a success
rate close to the cloud-only solution, which can reach 91% and 84%.
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Figure 6: Throughput analysis with different datasets.

These results show that JAVP can effectively improve the efficiency
of edge-cloud collaborative video processing through joint-aware.

Table 1: Success rates for meeting the accuracy requirements

Dataset Cloud-Only JAVP

UA-DETRAC 93% 91%
DAWN 85% 84%

5.2.2 Accuracy-Energy Consumption Tradeoff. We compare our
proposed architecture with some baseline methods based on edge-
cloud collaboration. We first investigate the accuracy-energy con-
sumption tradeoff optimization results of JAVPwith different datasets.
We assume that a camera is responsible for a type of task (e.g., mon-
itoring different traffic areas). Then the images in the dataset are
assigned to all cameras for simulating the task input. Since differ-
ent tasks in real scenarios usually have different requirements for
accuracy, the accuracy requirements of the input task are chosen
randomly from [0.5,0.8].

Table 2: Accuracy comparison results of UA-DETRAC

Detection Objects RDAP DAO Sniper JAVP

Cars 64.58% 67.94% 67.91% 68.33%
Buses 60.66% 64.78% 63.44% 65.70%
Persons 58.31% 62.58% 61.47% 63.42%

The experimental comparison results of accuracy under differ-
ent datasets are reported in Table 2 and Table 3. It can be found
that the accuracy of JAVP is higher than other methods in mul-
tiple detection objects and different weather. Among them, DAO
also achieves good accuracy due to the optimization of the data
resolution. In contrast, RADP and Sniper focus only on bandwidth
and energy consumption, so they result in lower accuracy rates.
Figure 7 shows the results of energy consumption. Compared with
other methods, JAVP has the lowest energy consumption. And its
advantage is more obvious as the time slot increases. Sniper also ex-
hibits favorable energy consumption characteristics due to resource
optimization focused on edge servers. Overall, the results show that
JAVP can achieve the tradeoff optimization of accuracy and energy
consumption through joint-aware and edge-cloud collaboration.

Table 3: Accuracy comparison results of DAWN

Detection Objects RDAP DAO Sniper JAVP

Fog
Cars 62.03% 65.81% 65.44% 65.78%
Buses 59.12% 62.17% 61.06% 63.26%
Persons 57.24% 60.14% 59.17% 61.03%

Rain
Cars 63.14% 65.83% 65.72% 66.71%
Buses 59.15% 63.31% 61.89% 64.23%
Persons 57.34% 61.11% 60.03% 61.95%

Sand
Cars 62.24% 65.36% 65.23% 65.82%
Buses 58.89% 62.03% 61.58% 63.07%
Persons 56.88% 60.32% 60.04% 60.91%

Snow
Cars 62.47% 65.35% 65.12% 66.29%
Buses 58.73% 62.64% 61.38% 63.67%
Persons 57.22% 60.87% 60.59% 61.43%

(a) UA-DETRAC (b) DAWN

Figure 7: Energy consumption analysis of different methods.

5.2.3 Accuracy-Delay Tradeoff. To test the optimization results of
the tradeoff between accuracy and delay, we set the range of delay
requirements to [0.2,0.6]. The accuracy and delay are optimized
by increasing the value of the weight parameter 𝜔 . Since there
are multiple types of weather in the DAWN dataset, the results in
Figure 8 average the accuracy under different weather. Although
we don’t limit the accuracy requirements of the task in this test.
We still observe that JAVP outperformed RDAP, DAO, and Sniper
in multiple detection objects. And it achieves good performance
on both datasets. In contrast, other methods perform poorly on the
DAWN dataset. This is because they lack the awareness of com-
plex scenarios and cannot adaptively adjust the resource allocation
to ensure the performance of dynamic scenarios. Next, we show
the comparison results for delay in Figure 9, where JAVP achieves
the lowest delay. We also find that the advantage of JAVP is more
pronounced as the time slot increases. The reason why JAVP can
achieve lower delay and higher accuracy is that the dynamic alloca-
tion of resources can have a significant impact on the delay for task
processing. The resource-aware module in JAVP can dynamically
adjust the resource allocation according to the delay requirement
and improve the accuracy at the same time.

5.2.4 Accuracy-Delay-Energy Consumption Tradeoff. In this exper-
iment, we impose restrictions on both the accuracy requirements
and the delay requirements. And the accuracy requirement is refer-
enced in Section 5.2.2 and the delay requirement is referenced in
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Figure 8: Accuracy analysis of different methods.

(a) UA-DETRAC (b) DAWN

Figure 9: Delay analysis of different methods.

Section 5.2.3. Dynamic networks in real-world scenarios can have a
significant impact on the results [40]. To further evaluate the perfor-
mance of JAVP, we experimented with the above method in stable
and fluctuating bandwidths. The stable bandwidth is configured at
100 Mbps, while the fluctuating bandwidth is set within a range of
20%. The accuracy comparison results under different bandwidth
environments are shown in Figure 10. We can see the accuracy of
JAVP is always higher than other methods. Compared with RDAP,
JAVP can improve average accuracy by more than 5%. And JAVP
can improve average accuracy by more than 3% compared with
DAO and Sniper. This is because JAVP can improve the accuracy
by adaptively adjusting the edge or cloud server.

(a) UA-DETRAC (b) DAWN

Figure 10: Average accuracy comparison results of different
methods.

Figure 11 and Figure 12 show the comparison results of delay
and energy consumption in different bandwidth environments,
respectively. JAVP is well adapted to both complex scenarios and
dynamic networks, consistently showing lower delay and energy
consumption than other methods. On average, JAVP has a 16% lower
delay in video processing than Sniper, 30% lower than DAO, and

(a) UA-DETRAC (b) DAWN

Figure 11: Average delay comparison results of different
methods.

(a) UA-DETRAC (b) DAWN

Figure 12: Average energy consumption comparison results
of different methods.

43% lower than RDAP. In addition, the average energy consumption
of JAVP is 26%, 35%, and 50% lower than that of Sniper, DAO, and
RDAP, respectively. Overall, JAVP can reduce energy consumption
and ensure accuracy through complexity-aware analysis. It can
also ensure delay through resource-aware optimization. Finally,
the tradeoff between accuracy, delay, and energy consumption is
realized under resource-constrained conditions.

6 CONCLUSION
In this paper, we introduce JAVP, the first video processing architec-
ture that supports both joint-aware and edge-cloud collaboration.
Thanks to efficient multiscale complexity-aware analysis and adap-
tive resource-aware analysis, JAVP can estimate the difficulty and
resources of a video task before it is offloaded, and then select
the best server to process. The core design of JAVP is to optimize
the tradeoff between accuracy, delay, and energy consumption
through joint-aware and edge-cloud collaboration. Experimental re-
sults demonstrate that JAVP has significant improvement in video
processing efficiency for edge-cloud collaboration compared to
state-of-the-art solutions. Future work will focus on the edge-cloud
collaboration approach based on the content-aware and adaptive
video parameters configuration.
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