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ABSTRACT
Recognizing characters from low-resolution (LR) text images poses
a significant challenge due to the information deficiency as well
as the noise and blur in low-quality images. Current solutions for
low-resolution text recognition (LTR) typically rely on a two-stage
pipeline that involves super-resolution as the first stage followed
by the second-stage recognition. Although this pipeline is straight-
forward and intuitive, it has to use an additional super-resolution
network, which causes inefficiencies during training and testing.
Moreover, the recognition accuracy of the second stage heavily
depends on the reconstruction quality of the first stage, causing
ineffectiveness. In this work, we attempt to address these challenges
from a novel perspective: adapting the recognizer to low-resolution
inputs by transferring the knowledge from the high-resolution.
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Guided by this idea, we propose an efficient and effective knowledge
distillation framework to achieve multi-level knowledge transfer.
Specifically, the visual focus loss is proposed to extract the character
position knowledge with resolution gap reduction and character re-
gion focus, the semantic contrastive loss is employed to exploit the
contextual semantic knowledge with contrastive learning, and the
soft logits loss facilitates both local word-level and global sequence-
level learning from the soft teacher label. Extensive experiments
show that the proposed one-stage pipeline significantly outper-
forms super-resolution based two-stage frameworks in terms of
effectiveness and efficiency, accompanied by favorable robustness.
Code is available at https://github.com/csguoh/KD-LTR.
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(b) Our proposed one-stage pipeline

(c) Feature visualization of recognition backbone 

(a) Two-stage pipeline for LTR

Figure 1: (a) The cascading in the two-stage pipeline leads
to inefficiency and the error accumulation affects the effec-
tiveness. For example, ‘Parrot’ is incorrectly reconstructed
as ‘Parret’ in the first stage which then leads to subsequent
misrecognition. (b) The proposed framework extracts multi-
level knowledge from high-resolution images and transfers
it to the recognizer. (c) The features of SR and HR differ in
the character regions, e.g. the ‘i’ in ‘Christie’.

1 INTRODUCTION
Scene text recognition (STR) has become increasingly popular in
recent years due to its various applications, such as license plate
recognition [26, 30], autonomous driving [5], and so on. However,
current STR methods suffer from significant performance degrada-
tion when recognizing low-resolution images [8, 23, 51].

To address this issue, the mainstream approaches have adopted
a two-stage pipeline (see Fig. 1 (a)). They split the whole LTR tasks
into two separate tasks, generating recognition-friendly text im-
ages in the first stage, followed by common text recognition in the
second stage. Guided by this two-stage strategy, several pioneering
works [13, 47, 55] employ the generic single-image super-resolution
model to generate SR for recognition. Recently, designing the text-
oriented super-resolution model, also known as Scene Text Image
Super-Resolution (STISR), has attracted the interest of many re-
searchers [8, 9, 33–35, 37, 41, 51, 52, 59, 60, 62]. For example, the
TextZoom dataset [51] has been introduced to facilitate real-world
STISR research. Furthermore, recent STISR methods [33, 34, 60]
have utilized pre-trained text recognizers [43] to inject linguistic

knowledge as prior guidance for the super-resolution blocks. Due
to the intuitiveness and simplicity, despite some alternative solu-
tions such as multi-task learning [23, 35] have been developed, this
two-stage pipeline is still prevalent.

Asmore advanced STISRmodels continue to be proposed, progress
has been made in this two-stage framework. However, this two-
stage pipeline also poses certain challenges. First, the two-stage
approach necessitates an additional super-resolution network, re-
sulting in inevitably high computational costs for both training and
inference. For example, the current state-of-the-art STISR model
[60] is even larger than the recognition model [3]. Moreover, due
to severe information loss and noise in LR, even the use of text-
customized super-resolution models may lead to wrong reconstruc-
tion and this reconstruction error will further be amplified due to
the cascading design. We also visualize the features extracted from
SR and HR in the recognizer backbone (see Fig. 1 (c)). It can be seen
that even though the super-resolution model attempts to imitate
HR in the pixel space, there are still differences between both in
the feature space.

To break the limitations brought by the two-stage approach, this
work explores a one-stage solution by directly adapting the text
recognizer to low-resolution inputs without any super-resolution
as pre-processing (see Fig. 1 (b)). In concrete, we design a LTR-
customized knowledge distillation paradigm to mine the knowledge
contained in high-resolution images and transfer it to the text
recognizer. The key to designing such a paradigm is to find what
knowledge should be used and how to transfer this knowledge.
To this end, we develop KD-LTR, a novel Knowledge Distillation
based framework for LTR, which can help the recognizer learn from
high-resolution images. The proposed distillation pipeline extracts
three distinct levels of knowledge to facilitate knowledge transfer.
Specifically, we employ the visual focus loss to mine the character
position knowledge using the resolution gap reduction techniques
and mask distillation strategy. In addition, we introduce semantic
contrastive loss which uses the contrastive learning scheme to
enable the recognizer to acquire contextual semantic knowledge.
Finally, the knowledge contained in the soft teacher label is learned
from both local word-level and global sequence-level perspectives
through the proposed soft logits loss. By leveraging the extensive
knowledge encapsulated in high-resolution images from multiple
levels, our approach achieves faster and more accurate performance
than the super-resolution based two-stage framework and can be
easily applied to various text recognition models.

Overall, our main contributions are three folds:
• Wepropose the first one-stage pipeline for LTR, which adapts
the text recognizer to low-resolution inputs by transferring
knowledge from high-resolution images.

• We propose three well-designed distillation losses to facili-
tate multi-level knowledge transfer.

• Extensive experiments show that the proposed one-stage
pipeline sets new state-of-the-art for LTR tasks in terms of
efficiency and effectiveness.

2 RELATEDWORK
Although many vision tasks, including image classification[18, 46],
object detection [6, 42], face recognition [2, 12], and text recognition
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Figure 2: An overview of the proposed framework. The branch with blue background is the HR teacher and the branch with red
background is the LR student. Three levels of loss are used to extract and transfer the knowledge in high-resolution images.

[3, 15] have achieved remarkable success, current methods still
struggle with significant performance degradationwhen confronted
with low-resolution images. Depending on the way in which the
HR prior is transferred to the LR images, current solutions to this
problem can be classified into two types: super-resolution based and
knowledge distillation based approaches. Super-resolution based
approaches [7, 16, 48, 52] learn the HR prior in the pixel space
by employing an additional super-resolution model before visual
recognition. In contrast, knowledge distillation based approaches
[17, 39] transfer knowledge from HR teacher to LR student in the
feature space using losses from different perspectives.

Super-resolution for Low-resolution Recognition. A natural idea
to handle the low-resolution visual recognition task is to enhance
the original low-quality input to an easily recognizable one by pre-
processing. Guided by this idea, some early works borrow from
generic Single Image Super-Resolution (SISR) [11, 29, 58] models to
super-resolve the LR to SR before recognition. However, since these
super-resolution models are usually trained with image quality as
the objective, their effectiveness is limited due to the mismatch
in objectives with the recognition task. Recently, there has been a
surge of interest in designing task-specific super-resolution models.
In the context of scene text recognition, several scene text image
super-resolution methods have been proposed, which have shown
promising results. For instance, TextSR [52] utilizes a GAN-based
architecture to generate recognition-friendly SR images. To facil-
itate real-world STISR research, the TextZoom dataset [51] was
introduced, accompanied by TSRN which considers the sequential
nature of text image data. Moreover, STT [8] implicitly makes the
model focus on the character regions by designing relevant loss
functions. TATT [34] achieves spatial deformation robust STISR by

using the proposed TP Interpreter. C3-STISR [60] uses three-level
clues to guide the super-resolution block and obtains favorable
results.

Knowledge Distillation for Low-resolution Recognition. The con-
cept of Knowledge Distillation (KD) was first introduced by Hin-
ton et al. [19] to transfer knowledge from the over-parameterized
teacher to the compact student. More recently, resolution distilla-
tion has been developed to address the challenges of low-resolution
visual recognition tasks. Unlike traditional KD, which focuses on
model compression, resolution distillation transfers knowledge
from the HR teacher to the LR student, enabling the student to
recover lost information in LR with supervision from different per-
spectives. While this pipeline has been proven to be effective in
image classification [61], object detection [39], and face recognition
[44], it has not been explored for low-resolution text recognition
task, whose data involves sequential nature.

3 METHOD
3.1 Overview
As shown in Fig. 2, we propose a knowledge distillation framework
that can extract different levels of high-resolution knowledge and
transfer them to a text recognizer to achieve low-resolution text
recognition without additional super-resolution modules. The pro-
posed framework consists of two branches: the HR teacher branch
and the LR student branch. The HR teacher branch, which can be
obtained from any off-the-shelf text recognizer, takes HR as input
and is frozen during training to ensure optimal knowledge transfer.
Meanwhile, the LR student branch works with low-resolution text
images and aims to recover lost details in the LR input. We begin by
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reviewing the generic framework for text recognition (Section 3.2).
Then, we present the details of the loss functions in the proposed
distillation framework (Section 3.3).

3.2 Base Text Recognizer
The text recognizer used in both the student and teacher branches
exploits the prevalent encoder-decoder framework [3, 15, 36]. As
shown in each branch of Fig. 2, the text recognition model is broadly
divided into three parts: the backbone for feature extraction, the
sequence modeling module, and the decoding prediction module.
Given input text images 𝐼 , the feature extraction backbone (Resnet
[18] or ViT [14]) first extracts from 𝐼 to obtain the visual features
F ∈ R𝑁×𝐶×𝐻×𝑊 , where 𝑁 is the batch size, 𝐶 is the number of
channels, and 𝐻 and𝑊 are the height and width of the features,
respectively. Subsequently, the sequence modeling module cap-
tures the contextual dependencies with LSTM [20] or Transformer
[49] to project the 2D visual features F into 1D semantic vectors
H ∈ R𝑁×𝑇×𝐶 , where 𝑇 is the predefined maximum length of the
character sequence. The H is then transformed into the character
probability distribution by the decoding prediction module, which
consists of projection layers and a softmax activation function. Lin-
guistic knowledge can be optionally incorporated via an additional
language model [15, 36].

3.3 High-resolution Knowledge Transfer
To efficiently transfer knowledge from high-resolution images, we
propose three levels of loss functions. The first level, visual focus
loss, is proposed to extract character position knowledge from the
visual features. It can bridge the resolution gap between the two
branches and give the character regionmore focus. The second level,
semantic contrastive loss, is exploited to extract contextual semantic
knowledge. It facilitates the generation of distinct semantic vectors
by leveraging contrastive learning. Finally, the third level, soft logits
loss, combines both word-level and sequence-level knowledge from
the soft teacher label to produce meaningful recognition results.
Further details of these three losses are as follows.

3.3.1 Visual Focus Loss. The visual features extracted from the
backbone in the teacher branch contain rich character position
knowledge to help the student model recover critical character re-
gion features which are useful for subsequent recognition. However,
due to the resolution gap of the inputs between the two branches,
the visual features of the two are not inherently identical. As such,
aligning the student and teacher visual features with absolute nu-
merical measures (e.g., L1 or L2) would be counterproductive. Fol-
lowing [44], we use the cosine similarity to measure the directional
consistency between features. Furthermore, since statistics such as
the mean and variance of a feature map can represent the corre-
sponding domain [32], we thus first normalize visual features to
achieve resolution-domain removal:

F̃ =
F − 𝜇
𝜎

, (1)

where F is a unified notation of the teacher features F 𝑡𝑒𝑎 and the
student features F 𝑠𝑡𝑢 . 𝜇 and 𝜎 ∈ R𝑁×𝐶 are the results of global
average pooling and standard deviation pooling of F .

Then the cosine similarity can be used to measure the distance
between the normalized features:

L′
𝑣𝑖𝑠𝑢𝑎𝑙

= 1 − 1
𝑁

1
𝐶

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1

⟨F̃ 𝑡𝑒𝑎
𝑖, 𝑗 , F̃ 𝑠𝑡𝑢

𝑖, 𝑗 ⟩, (2)

where ⟨·, ·⟩ denotes the vector cosine-similarity.
Further, based on the observation in Fig. 1 (c), character features

are more difficult to learn as well as more important for recognition
than background features. Drawing inspiration from [56], we utilize
the mask distillation strategy to make the student more focused
on the reconstruction of character features while blocking out the
disturbance from irrelevant background noise. Specifically, we use
the attention map from the teacher branch as a soft mask to reassign
the weights of different pixels. Then the visual focus loss with mask
distillation can be written as follow:

L𝑣𝑖𝑠𝑢𝑎𝑙 = 1 − 1
𝑁

1
𝐶

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1

⟨MF̃ 𝑡𝑒𝑎
𝑖, 𝑗 ,MF̃ 𝑠𝑡𝑢

𝑖,𝑗 ⟩, (3)

where M denotes the mask from the teacher attention map. Since
most of the popular recognizers [15, 36, 40, 53, 54, 57] are attention-
based, it is easy to obtain the attention map.

3.3.2 Semantic Contrastive Loss. While the visual focus loss can
assist in recovering the lost spatial details in LR, the semantic vec-
tors generated from the sequence modeling module can provide
contextual information which is useful for sequential tasks. We
therefore exploit this contextual semantic knowledge contained in
the HR teacher’s semantic vectorsH𝑡𝑒𝑎 .

Specifically, we first obtain the corresponding semantic vector of
each character from the recognizer’s sequence modeling module:

H = softmax(𝑄𝐾
𝑇

√
𝐶

)𝑉 , (4)

where 𝑄 is the position query of character orders. 𝐾 and 𝑉 are
the key and value generated from visual features F . The above
attentional sequence modeling can make the 𝑖-th element ℎ𝑖 in
H represent the semantic information corresponding to the 𝑖-th
character in the text image.

We then embed the contrastive learning scheme between H𝑠𝑡𝑢

andH𝑡𝑒𝑎 to facilitate the learning of more discriminative semantic
knowledge. In concrete, we first construct positive and negative
samples for contrastive learning. Given ℎ𝑖 in H𝑠𝑡𝑢 (H𝑡𝑒𝑎) as the
anchor, its corresponding positive sample is the 𝑖-th vector ℎ′

𝑖
in

the other set H𝑡𝑒𝑎 (H𝑠𝑡𝑢 ), and its negative samples are all the
elements from the union ofH𝑡𝑒𝑎 andH𝑠𝑡𝑢 after dropping ℎ𝑖 and
ℎ′
𝑖
. Then the contrastive learning is implemented in the 1D semantic

representation space:

L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 = − 1
𝐿

𝐿∑︁
𝑖=1

log
exp(𝑠𝑖𝑚(ℎ𝑖 , ℎ′𝑖 )/𝜏)∑

ℎ∈H𝑡𝑒𝑎∪H𝑠𝑡𝑢\ℎ𝑖 exp(𝑠𝑖𝑚(ℎ𝑖 , ℎ)/𝜏)
, (5)

where 𝐿 is the sum of valid character length over batch. 𝑠𝑖𝑚(·, ·) is
the distance metric and we use the cosine similarity here. 𝜏 is the
distillation temperature.

Different from previous contrastive learning methods in sequen-
tial recognition [1, 31] which generate contrastive instances in
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a predefined and fixed manner (e.g., sliding windows or image
patches), we choose to perform contrastive learning on the seman-
tic vectors generated from the sequence modeling module. Since
the contrastive instances are already aligned in character order by
the attention mechanism, we can obtain each contrastive instance
in a data-dependent manner, which is more effective for images
with arbitrary text orientations.

3.3.3 Soft Logits Loss. The utilization of the knowledge from the
soft teacher label is appealing due to its capability to reflect the sim-
ilarity between characters [22]. Previous studies [4] have enabled
this knowledge transfer by minimizing the KL distance between
the output distributions of the student and the teacher at each time
step. Nonetheless, this word-level distillation is sub-optimal for
sequential tasks as it lacks sequence-level supervision. To this end,
we modify the teacher distribution to include both local word-level
knowledge and global sequence-level knowledge.

Formally, we refer to the formula in [21], and the probability of
𝑘-th character at time step 𝑡 in the teacher output 𝑝𝑘𝑡 can be revised
as the weighted sum of word-level and sequence-level probabilities:

𝑝𝑘𝑡 = (1 − 𝛼)𝑝𝑘𝑡 + 𝛼
∑
𝜋𝑡=𝑘

∏𝑇
𝑡=1 𝑝

𝜋𝑡
𝑡∑

𝜋

∏𝑇
𝑡=1 𝑝

𝜋𝑡
𝑡

, (6)

where 𝜋 is all possible decoding paths, 𝛼 is the hyper-parameter
that balances the two distributions. The mathematical derivation
can be found in the supplementary material.

However, applying the above equation directly for teacher distri-
bution revision is intractable in practice considering the exponential
number of all possible paths. Thus, in practical implementation, we
apply some techniques for approximation. Specifically, we select
paths with the TopK highest path likelihoods using beam search.
Moreover, to ensure the representativity of the beam search results,
we only use word-level teacher distribution as supervision when
the maximum path likelihood is below a given threshold 𝑟 .

The soft logits loss is then defined as the KL distance between
the modified teacher distribution 𝑝 and the student distribution 𝑞:

L𝑙𝑜𝑔𝑖𝑡𝑠 =
1
𝑇

𝑇∑︁
𝑡=1

|A |∑︁
𝑘=1

𝑝𝑘𝑡 log
𝑝𝑘𝑡

𝑞𝑘𝑡

, (7)

where |A| is the size of alphabet. Similar to the traditional logits
distillation [19], we also adopt a high distillation temperature to
smooth the distribution.

Although some previous works [10, 27] also employ sequence-
related knowledge in the soft teacher label, they treat the whole
path likelihood as the atomic element and ignore the fine-grained
information pertaining to different characters. For instance, easily-
confused characters in one sequence should possess a lower confi-
dence score. In contrast, the proposed sequence-level distribution
uses the votes of all decoding paths at each character, which is
integrated with word-level distribution to facilitate the acquisition
of both global and local knowledge from the soft teacher.

3.4 Overall Loss
The overall loss is from the following parts: the task-related cross-
entropy loss, the visual focus loss that aids in transferring character
position knowledge, the semantic contrastive loss that facilitates

contextual semantic knowledge, and the soft logits loss that trans-
fers both word-level and sequence-level soft label knowledge.

L = 𝜆1L𝑐𝑒 + 𝜆2L𝑣𝑖𝑠𝑢𝑎𝑙 + 𝜆3L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 + 𝜆4L𝑙𝑜𝑔𝑖𝑡𝑠 , (8)

where 𝜆1 𝜆2, 𝜆3 and 𝜆4 are hyper-parameters.

4 EXPERIMENT
4.1 Datasets
TextZoom [51] contains 17367 LR-HR scene text image pairs for
training and 4373 pairs for testing. The test set is divided into three
subsets, with 1619 pairs for the easy subset, 1411 pairs for the
medium subset, and 1343 pairs for the hard subset.
ICDAR2013 (IC13) [25] consists of 1015 images for testing, most
of which are regular text images. Some of them are under uneven
illumination.
ICDAR2015 (IC15) [24] consists of images taken from scenes and
has two versions: 1,811 images (IC15S) and 2,077 images (IC15L).
We use (IC15S) for experiments.
CUTE80 [45] consists of 288 images. Most of them are heavily
curved but with high resolution.
Street View Text (SVT) [50] has 647 images collected from Google
Street View. Some of the images are severely corrupted by noise,
blur, and low resolution.
Street View Text Perspective (SVTP) [38] contains 645 images
of which texts are captured in perspective views.

4.2 Implementation Details
We use 4 NVIDIA TITAN X GPUs to train our model with batch
size 128. We experimentally find that the contrastive learning in
L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 is not sensitive to batch size. Adam [28] is used for op-
timization. We adopt a learning rate of 5e-5, with a decay factor
of 0.1 every 25 epochs. We set the hyper-parameter in total loss
𝜆1 = 4, 𝜆2 = 2, 𝜆3 = 0.025, 𝜆4 = 20. The distillation temperatures
in L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 and L𝑙𝑜𝑔𝑖𝑡𝑠 are 0.1 and 4, respectively. In the beam
search, we use the paths with the top 6 likelihoods as approxima-
tions and set the threshold 𝑟 = 0.1. We use the proposed distillation
protocol on the currently prevalent SoTA text recognizers, namely
ABINet [15], MATRN [36] and PARSeq [3]. Since the input images
of the student and teacher branches are of different resolutions, we
modified the convolution stride (for CNN backbone) or patch sizes
(for ViT backbone) to ensure the consistency of the deep visual
features between teacher and student. We use the released pre-
trained weights to initialize the student and teacher, and fine-tune
the student using the proposed distillation framework. We refer
to the student model adapted to low-resolution as ABINet-LTR,
MATRN-LTR and PARSeq-LTR, respectively.

4.3 Evaluation Metrics
We evaluate the model in terms of efficiency and effectiveness.
Specifically, we adopt text recognition accuracy to demonstrate
the effectiveness of different methods. We utilize Floating Point
Operations (FLOPs) and the number of parameters (Params) to
present the efficiency.
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Table 1: Ablation on visual focus loss. ‘cos’ denotes cos-
similarity loss, L2 loss is used when cos is removed. ‘norm’
denotes the mean-variance normalization. ‘mask’ denotes
the mask distillation strategy.

cos norm mask Recognition Accuracy↑
Easy Medium Hard avgAcc
86.16% 71.72% 55.17% 71.98%

✔ 86.04% 72.22% 55.25% 72.12%
✔ ✔ 86.20% 71.89% 55.72% 72.22%
✔ ✔ ✔ 86.91% 72.36% 55.10% 72.45%

Table 2: Ablation on semantic contrastive loss. We compare
with L2 loss without contrastive learning and SeqCLR with
manually predefined contrastive instance division manner.

semantic loss Recognition Accuracy↑
Easy Medium Hard avgAcc

L2 86.59% 72.09% 54.95% 72.19%
SeqCLR [1] 85.97% 72.09% 55.92% 72.26%

Ours 86.91% 72.36% 55.10% 72.45%

4.4 Ablation Study
In this section, we conduct an ablation study to demonstrate the
effectiveness of each component.We use thewidely adopted ABINet
as the base recognizer on the TextZoom dataset.

4.4.1 Ablation on Visual Focus Loss. The proposed visual focus
loss is employed to exploit the rich character position knowledge
in the visual features of teacher branch. It contains the cosine simi-
larity with the normalization operator to bridge the resolution gap,
and the mask distillation strategy to prompt a character-focused
feature learning. We conduct ablation to validate the effectiveness
of different components in L𝑣𝑖𝑠𝑢𝑎𝑙 . Table 1 shows the results. The
direction-related metric results in an average accuracy improve-
ment of 0.14% and the normalization operation improves accuracy
by 0.1% through removing the resolution differences. The subse-
quent mask distillation further improves the average accuracy of
0.23% by character region focus.

4.4.2 Ablation on Semantic Contrastive Loss. We utilize the seman-
tic contrastive loss to extract contextual semantic knowledge with
contrastive learning. Since the contrastive instances have been
aligned by the attentional sequence modeling module, it is feasi-
ble to adaptively decide the number of instances according to the
text length in different images. We conduct experiments to verify
its effectiveness (see Table 2). It can be seen that both contrastive
based methods (SeqCLR and ours) outperform the non-contrastive
one (L2), suggesting that contrastive learning can extract more
discriminative context-aware semantic knowledge. Furthermore,
the proposed method is more robust to spatially deformed text
images benefiting from the adaptive instance division, leading to
an average accuracy of 0.19% higher than SeqCLR which uses a
fixed division manner.

Table 3: Ablation on soft logits loss. WKD denotes word-level
distillation. SKD denotes the sequence-level distillation.

Recognition Accuracy↑logits loss Easy Medium Hard avgAcc
WKD [4] 85.86% 72.22% 55.40% 72.10%
SKD [10] 85.92% 71.58% 54.43% 71.62%
Ours 86.91% 72.36% 55.10% 72.45%

Table 4: Joint effect ablation of the proposed loss functions.

visual semantic logits Recognition Accuracy↑
Easy Medium Hard avgAcc
81.35% 68.32% 51.08% 67.85%

✔ 86.35% 72.01% 54.28% 71.87%
✔ ✔ 85.73% 72.01% 55.40% 71.99%

✔ ✔ 86.21% 72.16% 55.42% 72.22%
✔ ✔ ✔ 86.91% 72.36% 55.10% 72.45%
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Figure 3: Ablation of distillation temperature on (a) semantic
contrastive loss and (b) soft logits loss.

4.4.3 Ablation on Soft Logits Loss. The proposed soft logits loss in-
troduces both local word-level and global sequence-level knowledge
from the soft teacher label. To verify the validity, we replace the
proposed loss with those used in previous work, i.e. word-level KL
loss [4] with each time step modeled independently and sequence
distillation loss [10] with the entire path likelihood as the target.
Table 3 presents the results. It can be seen that only sub-optimal
results can be achieved with only one single-level loss. By contrast,
by providing both local and global knowledge, the proposed method
outperforms others.

4.4.4 Combination of Different Losses. We analyze the combined
effects of the three proposed distillation losses (refer to Table 4).
The results show that using only the task-related cross-entropy
loss yielded an accuracy of 67.85%. By incorporating the knowl-
edge from the soft teacher label, there is a recognition accuracy
improvement of 4.02%. The addition of semantic contrastive loss,
which can migrate contextual semantic knowledge, led to an in-
crease in accuracy of 0.12%. The visual focus loss, which transfers
character position knowledge, further improved the accuracy by
0.35%. Finally, the best result of 72.45% was achieved when all three
losses were utilized.

4.4.5 Ablation on Hyper-parameters. Both semantic contrastive
loss and soft logits loss contain temperature hyper-parameters,
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Table 5: Comparison with state-of-the-art two-stage methods on the TextZoom dataset regarding efficiency and effectiveness.
SR refers to using the STISR model for super-resolution before recognition. KD refers to adapting the text recognizer to low
resolution with knowledge distillation.

Recognition Accuracy↑Text Recognizer Method Type FLOPs↓
(×109)

Params↓
(×106) Easy Medium Hard avgAcc

Bicubic - - - 77.52% 56.98% 42.81% 60.23%
TSRN [51] SR 6.38 39.42 76.10% 61.16% 45.57% 61.90%
STT [8] SR 6.66 39.95 79.80% 64.99% 48.47% 65.40%

TATT [34] SR 7.45 52.68 80.67% 65.77% 50.26% 66.52%
C3-STISR [60] SR 8.67 76.08 81.35% 66.90% 49.89% 67.03%

ABINet [15]

Ours KD 5.46 36.74 86.91% 72.36% 55.10% 72.45%
Bicubic - - - 80.42% 58.97% 44.97% 62.61%

TSRN [51] SR 10.74 46.84 77.08% 62.65% 47.21% 63.25%
STT [8] SR 11.06 47.37 81.66% 65.98% 50.11% 66.91%

TATT [34] SR 11.85 60.10 81.10% 66.62% 51.68% 67.39%
C3-STISR [60] SR 13.07 83.50 81.90% 68.04% 51.08% 67.96%

MATRN [36]

Ours KD 9.86 44.16 86.91% 73.14% 56.96% 73.27%
Bicubic - - - 90.36% 75.34% 57.11% 75.30%

TSRN [51] SR 3.76 26.51 79.74% 61.09% 47.65% 63.87%
STT [8] SR 4.40 27.04 83.69% 66.69% 51.75% 68.40%

TATT [34] SR 4.83 39.77 82.21% 65.91% 52.12% 67.71%
C3-STISR [60] SR 6.06 63.17 84.25% 68.25% 50.86% 68.83%

PARSeq [3]

Ours KD 2.93 23.81 90.36% 78.88% 63.22% 78.23%

LR HR Ours
Two-stage Method

SR Result

eduroamedueam

weibowaibo

800 963 476 800 963 475

yellowyallow

Figure 4: Qualitative comparisonwith the two-stage approach
[60]. Erroneous reconstruction due to low quality of LR in
the two-stage pipeline can affect subsequent text recognition.

here we focus on how distillation temperature affects model per-
formance. Fig. 3 (a) shows the effects of distillation temperature in
L𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 . It can be seen that as the distillation loss gets smaller,
the recognition accuracy increases. This is due to the fact that a
small temperature amplifies the differences between the seman-
tic vectors in contrastive learning, forcing the model to focus on
the subtle differences, thus facilitating the learning of more dis-
criminative embeddings and leading to an increase in performance.
However, too low a temperature can lead to an unhealthy gradi-
ent by over-amplifying the difference. In addition, the variation of
model performance with temperature in L𝑙𝑜𝑔𝑖𝑡𝑠 is shown in Fig. 3

(b). A larger distillation temperature can make the distribution more
uniform, thus aiding the learning of similarities between characters
and enhancing the model’s ability to differentiate between confus-
able characters. However, too large a temperature is detrimental
due to the reduction of information.

4.5 Comparison to State-of-the-Arts
Wefirst compare our method with super-resolution based two-stage
methods. After that, we conduct the robustness test on five chal-
lenging STR benchmarks. Finally, we compare with other solutions
to LTR.

4.5.1 Comparison with Two-stage Methods. We compare with the
super-resolution based two-stage approaches which use the STISR
model before recognition. Table 5 shows the results on the TextZoom
dataset. Surprisingly, the recognition accuracy of bicubic even ex-
ceeds that of the SoTA STISR method [60] when applying a recog-
nizer [3] with strong contextual modeling capabilities. We speculate
that it is due to the manipulation of the original LR image by the
super-resolution model. Moreover, by including only one text recog-
nizer without any pre-processing model, the proposed framework
is highly efficient, for example, PARSeq-LTR saves 3.13 GFLOPs
and 39.36M parameters compared with C3-STISR. In addition, our
method achieves a significant recognition accuracy improvement
over the two-stage pipelines due to the use of joint optimization.
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Table 6: Adaption to scene text recognition benchmarks. Im-
ages are manually downscaled to obtain LR for testing.

Recognition Accuracy↑Method IC13 IC15 CUTE80 SVT SVTP
abinet
TSRN 53.20% 36.44% 39.93% 42.66% 36.59%
STT 56.35% 39.37% 41.30% 41.42% 40.47%
TATT 53.60% 36.72% 40.97% 44.05% 37.36%

C3-STISR 55.17% 39.48% 36.81% 44.51% 39.22%
Ours 57.44% 44.17% 41.32% 46.06% 42.64%
matrn
TSRN 54.09% 35.89% 39.93% 43.43% 38.76%
STT 56.65% 40.36% 42.36% 43.89% 42.02%
TATT 57.43% 39.76% 42.01% 43.12% 43.41%

C3-STISR 57.64% 42.19% 42.36% 44.51% 42.64%
Ours 59.01% 43.57% 43.40% 53.31% 43.72%
parsq
TSRN 55.86% 38.98% 47.92% 44.20% 39.69%
STT 60.89% 42.79% 46.18% 46.68% 44.03%
TATT 55.96% 41.74% 48.26% 46.21% 41.24%

C3-STISR 58.72% 42.30% 44.10% 45.44% 42.33%
Ours 62.36% 49.81% 53.82% 53.94% 49.61%

Impressively, PARSeq-LTR even outperforms the two-stage pipeline
which uses C3-STISR model for STISR by 9.4% on average recogni-
tion accuracy. A qualitative comparison is shown in Fig. 4.

4.5.2 Robustness Comparison. We first test the data distribution
shift robustness of different methods by freezing the model trained
on TextZoom and directly transferring them to five scene text
recognition benchmarks. Since these STR datasets contain high-
resolution images, we first manually degrade the raw images, in-
cluding blur, noise, etc., before using the degraded images to test
the robustness, see the supplementary material for details.

Table 6 shows the experimental results. It can be seen that the pro-
posed method achieves SoTA performance on all five STR datasets
even after transferring to other data distribution. For example,
PARSeq-LTR achieves a 7.51% performance boost versus C3-STISR
on IC15 dataset. The above results demonstrate the data distribution
robustness of the proposed method.

Furthermore, we study the performance variation of different
methods under different levels of Gaussian Blur and Gaussian Noise.
Fig. 5 shows the results. For the gaussian blur, our method drops
more slowly and outperforms the super-resolution based two-stage
methods at all blur settings. For the gaussian noise, the difference
among different methods is not significant when the noise is at a
high setting, but our method still beats others.

4.5.3 Comparison with Other Solutions to LTR. In addition to the
super-resolution based two-stage framework, multi-task learning,
which handles LTR by learning common visual features for both
super-resolution and text recognition, has also been proposed [23,
35]. In this work, we compare with two representative multi-task
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Figure 5: Recognition accuracy of different methods with
varying (a) Gaussian Blur and (b) Gaussian Noise. ABINet is
used on the IC15 dataset.

Table 7: Comparison with multi-task learning based
pipelines. The proposed high-resolution knowledge transfer
framework still achieves SoTA performance.

Recognition Accuracy↑Method Easy Medium Hard avgAcc
PlugNet [35] 81.90% 68.89% 52.27% 68.60%
IFR [23] 82.58% 68.89% 52.87% 69.04%
Ours 86.91% 72.36% 55.10% 72.45%

learning based methods, i.e., PlugNet [35] and IFR [23]. To en-
sure a fair comparison, we apply the plug-and-play feature super-
resolution modules of PlugNet and IFR to ABINet, and compare
them with our ABINet-LTR. The results presented in Table 7 show
that although this multi-task framework outperforms the super-
resolution based two-stage one, it still falls behind the proposed
distillation framework. This is because these methods are limited to
pixel space learning as well as do not take into account supervision
from different perspectives, such as semantic space and sequence
modeling, which results in limited performance.

5 CONCLUSION
We propose a novel knowledge distillation framework that adapts
text recognizers for the low-resolution to address challenges posed
by previous super-resolution based two-stage pipelines. Three distil-
lation losses are designed to extract multi-level knowledge from the
high-resolution. The visual focus loss transfers the character posi-
tion knowledge in a resolution-agnostic manner and reinforces the
character focus withmask distillation. The semantic contrastive loss
leverages contrastive learning to facilitate the learning of discrimi-
native contextual semantic knowledge. The soft logits loss models
both local word-level and global sequence-level knowledge in the
soft teacher label for better supervision. Extensive experiments
demonstrate that the proposed one-stage pipeline achieves state-
of-the-art performance against two-stage counterparts in terms of
efficiency and effectiveness, with favorable robustness. We hope
that our work can inspire more studies on one-stage LTR.
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