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Abstract—
Recent years have witnessed many immersive media services and applications, ranging from
360-degree video streaming, to augmented and virtual reality (AR and VR) and the recent metaverse
experiences. These new applications usually have common features including high fidelity, immersive
interaction, and open data exchange between people and the environment. As an emerging
paradigm, edge computing has become increasingly ready to support these features. We first show
that a key to unleashing the power of edge computing for immersive multimedia is handling AI
models and data. Then, we present a framework that enables joint accuracy- and latency-aware
edge intelligence, with adaptive deep learning model deployment and data streaming. We show that
not only conventional mechanisms such as content placement and rate adaptation, but also the
emerging 360-degree and virtual reality streaming can benefit from such edge intelligence.

Introduction
Recent years have witnessed many im-

mersive multimedia services and applications,
including 360-degree video streaming, aug-
mented and virtual reality, and the current
multi-interface supported metaverse applica-
tions [1], [2]. These new applications usually
have common features: high fidelity (e.g., 4K
resolution, 90+ fps, and 100+ degrees of field
of view are supposed to support satisfactory
Quality of Experience (QoE)), immersive in-
teraction (e.g., < 10 milliseconds in interac-
tion latency), and open data exchange (e.g.,
any users among the billions of today’s social-
network users can communicate in virtual
worlds to share all kinds of multimedia content

via different social groups).

These features require powerful computa-
tional resources in the service infrastructure,
low latency in the network, and social net-
work support. Today, solutions to realize these
immersive multimedia applications are mainly
either cloud-centric or device-centric. In cloud-
based solutions, the centralized cloud services
(e.g., virtual GPU/CPU instances, databases,
and content delivery networks) are utilized.
Multimedia content, such as video chunks,
are streamed to users from geo-distributed
servers deployed worldwide. For device-based
solutions, more content processing workflows
are carried out by users’ end devices like head-
mounted displays. Such devices are usually
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Figure 1. Illustration of the edge intelligence for immersive multimedia applications.

powered with local computational capacities
and storage so that a certain fraction of the
applications are running at the local devices,
e.g., virtual reality scenes can be rendered and
displayed locally.

Although these two paradigms have many
implementation feasibilities and infrastructure
readiness, they have the following limitations
for high-quality immersive multimedia appli-
cations. On one hand, cloud-based solutions
assume that all or most of the multimedia
functionalities can be deployed remotely, i.e.,
in the cloud, which is not feasible for services
and applications with stringent data privacy
requirements [3]; Meanwhile, due to the in-
trinsic propagation latencies between a cloud
server and the end-users, and latencies caused
by cloud infrastructure (e.g., load balancer
and other redirection mechanisms), certain
low latency is hard to be achieved in cloud-
based solutions, especially when users are lo-
cated far away from the cloud servers. At
the same time, today’s cloud deployment is
also more expensive in general due to the
installation and maintenance costs for dedi-
cated infrastructure. On the other hand, the
biggest limitation of a device-centric solution
is the limited energy, computational, and stor-
age resources on a user-end device, making
it hard to provide a quality guarantee for
emerging resource-intensive multimedia appli-

cations; Also, device-centric solutions usually
assume a standalone installation on a par-
ticular device, making it less flexible to the
application evolution.

Due to these limitations, new paradigms
have been investigated. Among these at-
tempts, using edge computing to empower
immersive multimedia has become promising
in recent years [4], [5], [6], [7]. The infrastruc-
ture is to be accessible at the edge for the
immersive metaverse, providing functionali-
ties including communication and networking,
computation, and also blockchain [8]. As an
emerging infrastructure design paradigm, edge
computing is usually deployed much closer to
users as a “middle layer” between the cloud
and the user devices. As illustrated in Fig-
ure 1, in edge scenario, on one hand, inter-
actions and data generated by users in im-
mersive multimedia applications can be pro-
cessed by the edge devices, in a “device-to-
edge” offloading manner; On the other hand,
cloud can also offload certain tasks to the
edge, e.g., letting edge execute compressed
deep learning models to provide inference ser-
vices locally. Edge computing has become in-
creasingly ready to support the above-required
features, with much lower cost and latency,
high scalability, and better privacy protection.
Compared with device-centric solutions, edge
computing is more resourceful and scalable,
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and easier to adapt to application deployment
over time. According to State of The Edge
report1, the global IT power footprint for edge
infrastructure is forecasted to increase from
1 GW in 2019 to over 40 GW by 2028, and
37% of the edge infrastructure will be used by
mobile and residential consumers, the major
users of advanced immersive multimedia ser-
vices and applications.

Our study serves as an exploration to pow-
ering edge computing for enabling better im-
mersive multimedia. We first show that the
features in immersive multimedia services and
applications, can be well supported by edge
computing. Next, we show that QoS (Quality-
of-Service) in immersive multimedia includes
both traditional metrics such as bitrate and
streaming delay, and the new metrics related
to learning-based strategies such as inference
accuracy and latency. The key to unleashing
the power of edge intelligence, is to empower
the edge devices to handle AI models and
user data well, with QoS-guaranteed inference
latency and accuracy.

We propose a framework that enables
accuracy- and latency-aware edge intelligence,
with adaptive deep learning model deployment
and data streaming. Several learning-based
strategies have shown their capabilities in
edge scenarios as follows: i) Predictive models,
which have been designed to predict resource
demands and user experience in immersive me-
dia; ii) Deep Reinforcement Learning (DRL),
which is a combination of Deep Learning (DL)
and Reinforcement Learning (RL) to build
an agent to learn the best actions over a
set of states through the interaction with the
environment, so as to maximize the long-term
accumulated rewards; and iii) Meta-learning,
which is an array of methodologies employed
to optimize the performance of existing deep
learning models, e.g., for the changing edge
data distributions. Edge intelligence powered
by such learning methods can help strategies
in immersive multimedia services and appli-
cations, including content placement and rate
adaptation, as well as viewport prediction in

1https://stateoftheedge.com/reports/
state-of-the-edge-2020/

360-degree and VR streaming.

Edge Intelligence for Immersive Multimedia
As illustrated in Figure 2, for the high

fidelity feature that usually requires a QoS-
guaranteed network, edge topology and con-
tent caching are promising to deliver mul-
timedia content. For the immersive user in-
teractions, edge infrastructure allows part of
the interactions to be responded by modulars
executing locally. And for the open data ex-
change, by mechanisms such as simulating a
virtual “avatar” locally on edge devices, com-
municating with remote proxies can possibly
be avoided in some cases.

• High fidelity means a high-quality im-
age/audio experience, and it usually re-
quires that the multimedia content can be
delivered to users with high QoS and QoE.
In today’s multimedia service distribu-
tion paradigms, research efforts have been
mainly devoted into two areas: 1) Building
high-quality service-to-user network topol-
ogy and infrastructure, so that multimedia
content and data can be streamed to users
with end-to-end bandwidths large enough;
2) Building efficient data prefetching and
caching strategies to enable users to fetch
the needed content from local.

• Immersive user interaction is also an es-
sential feature in immersive multimedia ap-
plications. According to different system
topology and communication patterns, the
response quality of user interaction depends
on the following factors. 1) Local process-
ing, where the interaction response can be
processed locally, e.g., game scenes that
are already pre-downloaded and the user’s
interaction feedback can be generated lo-
cally; and 2) Remote processing, where the
interactions are to be propagated to remote
servers or other users, and the user has to
receive certain information correspondingly
to generate local feedback. In either case,
the system will process specific tasks on the
edge devices to reduce the remote commu-
nication overhead.

• Open data exchange is another feature of
immersive multimedia applications. Among
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Figure 2. Edge intelligence for supporting immersive
multimedia applications and services.

the previous immersive interactions, some
interactions involve data exchange between
people. In immersive applications such as
virtual events or gaming, the users can be
physically located in different places in the
world, and open data exchange is challeng-
ing because messages have to be delivered
for a long distance, incurring large latencies.
Handling such exchange locally is a promis-
ing strategy to reduce communication la-
tency. Since such response is performed by
users, edge intelligence provides the poten-
tial to “generate” possible responses similar
to those generated by real remote users
according to their historical behaviors, so
that some messages to a remote user can
be handled locally.

Key to Edge Intelligence: Handling Model
and Data Well

The key to edge intelligence is about how
to handle deep learning models well. In par-
ticular, handling models well means satisfying
users with the expected accuracy and latency
during the inference phase [9], after the deep
learning models have already been pre-trained
for deployment. It usually involves collabora-
tive model inference with both edge and cloud
capacities, e.g., joint edge-cloud inference.

Different from conventional cloud-based
MLaaS (i.e., Machine Learning as a Service)
in which inference accuracy is regarded as
the most if not only criteria for the inference
performance, applications in immersive mul-

timedia usually have multiple inference per-
formance metrics varying over time, including
1) inference latency that determines the “live-
ness”, 2) inference complexity that determines
the energy consumption, and also 3) inference
accuracy.

Impact of Model and Data on Inference Quality
In the edge inference setup for immersive

multimedia, these metrics are actually affected
by both the deep learning model (usually
“customized” to fit the edge devices) and the
input data (usually “compressed” to fit the
network condition) for the inference tasks.
Next, we present how model and data affect
the inference quality, respectively.

Impact of Model on Inference Quality
When using edge intelligence in immersive
multimedia applications, deep learning models
are executed entirely or partially at the edge
devices. The impact of a deep learning model
on inference performance is highly affected
by the model structure and training status.
Keeping the model deep and large enough is
a common practice to have high accuracy,
but it also incurs high computational costs
for each inference task, leading to larger in-
ference latency. Knowledge distillation, model
pruning, and model quantization have thus
been used to make “lightweight” model ver-
sions [10], which particularly satisfy resource-
limited edge devices.

Impact of Data on Inference Quality On
the other hand, in the edge intelligence for
the immersive multimedia scenario, input data
is also a non-negligible factor to affect the
inference quality, in a sense that the input
data (e.g., video stream, image, and audio)
has to be uploaded or streamed from user
devices to edge devices and/or cloud servers.
The input data thus determines the upload
latency by its volume and the inference ac-
curacy by its data quality (e.g., image reso-
lution and the inherent inference difficulty).
Data compression strategies (e.g., JPEG) and
downsampling (e.g., region crop and pixel-
level downsampling) are common practices to
change the input data, which all lead to the
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change in inference quality.
In our study, we have particularly inves-

tigated the impact of both the lightweight
model versions and the different compressions
of the input data on the inference perfor-
mance. In Figure 3, we plot the impact of
model pruning and quantization on the infer-
ence accuracy: the x-axis represents the differ-
ent data versions (larger x indicates smaller
input data size), and the y-axis represents
the different model versions (larger y indicates
smaller model complexity and size). Each
curve represents the same accuracy achieved
with different model and data configurations.
In Figure 3(a)(b), we have the impact of
varying model pruning and quantization with
input images compressed with different JPEG
quality levels; While in Figure 3(c)(d), we
have the impact of varying model pruning and
quantization with input images compressed
by different downsamplings. Our insights for
changing models and input data for edge in-
telligence are as follows.

• Larger models provide higher accuracy con-
sistently under different data compression
schemes, and larger data sizes also ensure
higher accuracy, under different model com-
pressions.

• The same inference accuracy can be
achieved by different configurations of
model versions and data versions, as long
as they are in the same accuracy curve
in these figures. This suggests that we are
able to deploy models strategically to serve
users because we can balance the tradeoff
between the size for data transmission and
the computational complexity for model ex-
ecution in the inference.

To empower edge infrastructure for immer-
sive multimedia services and applications, a
common demand is to deploy models or partial
models on edge devices, whose intelligence
can be used for optimizing the edge network
topology, content processing as well as avatar
simulation. A challenging problem for edge
deep learning deployment is how to balance
the tradeoff between the accuracy and infer-
ence latency, both affected by the complexity
of deep learning models.

Privacy in Edge Intelligence for Immersive
Multimedia

In today’s practice, edge intelligence is in-
trinsically enabled by a data-driven scheme.
Thus, privacy and security are non-negligible
issues for edge intelligence-driven immersive
multimedia, especially when personal data can
be collected from more and more new modali-
ties. Looking into the future metaverse appli-
cations, security and privacy issues are likely
to become even more important concerns [3],
e.g., pervasive data collection, privacy leakage,
and compromised edge/end devices.

In the edge intelligence infrastructure, pri-
vacy and security can be enhanced by com-
putational offloading using a trusted exe-
cution environment, federated learning, and
also adversarial machine learning [8]. In the
edge intelligence framework, the training pro-
cess can use federated learning and adversar-
ial machine learning for privacy protection,
while the inference process can benefit from
trusted execution environment. Meanwhile, it
is also important to leverage machine learning
and blockchain technologies to promote self-
governance capabilities of metaverse commu-
nities to improve privacy and security, since
intelligence and distribution are two trends for
immersive and future metaverse regulation.

Joint Accuracy- and Latency-aware Model
Deployment

To deploy models at edge devices to satisfy
different accuracy and latency requirements of
users, we have the following model deployment
framework. Figure 4 illustrates the accuracy-
and latency-aware deep learning model edge
deployment. We propose to “profile” the im-
pact of both deep learning models and input
data samples, on the inference accuracy and
inference latency. In particular, the purpose
of profiling a deep learning model is to com-
press models so that they can be executed
on such resource-limited edge devices, and the
purpose of data profiling is to compress input
data so that they can be transmitted fast
enough. Since model and data compressions
are not free—they usually lead to degraded
accuracy, strategical model compression and
deployment, as well as data compression and
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(a) Model pruning + JPEG compression

(b) Model quantization + JPEG compression

(c) Model pruning + image downsampling

(d) Model quantization + image downsampling

Figure 3. The impact of model versions and data compressions on the inference accuracy.

inference task scheduling, are in demand.

Profiling Model and Data
Model and data profiling is the first step

for model deployment and data scheduling.
For today’s sophisticated deep structures like
Transformer, it is challenging to have a closed-
form analysis for the impact of deep learn-
ing models and quality of input data on
the final inference accuracies. We propose
a data-driven approach for profiling mod-
els and data on their impact on the infer-
ence performance. We have an original model
M and a series of model compression “op-
erations” (e.g., pruning, quantization, etc.),
which compress the original model into its
variants {M1,M2, · · · ,Mm}, where Mi is the
i-th compressed version of model M . We have
a testing dataset D, which can be divided into
subsets {D1, D2, · · · , Dd}, where each subset
Dk represents certain features like “daytime”,
or “outdoor”, etc.. Similarly, a data sample
d ∈ Dk can be compressed by a data compres-
sion operation, such as JPEG or downsam-
pling for image data, into different versions
{d1, d2, · · · , ds}, where dj is the j-th compres-
sion version for sample d.

We calculate a relative accuracy for the
compressed model and data, against the ac-
curacy inferring the original data sample over
the original large model. When “profiling” the
performance for a particular combination of a

pair of model compression strategy generating
a model compression, and a data compression
strategy generating data compressions for a
particular sub-dataset Dk, we calculate the
average relative accuracy, so that it captures
how the model compression and data compres-
sion perform for samples similar to Dk.

In our study, we have observed that for
different subsets, the “best” combinations
of model compression and data compression
strategies also differ. When running the com-
pressed model on a particular edge device,
besides the accuracy above, we also consider
the inference latency, i.e., the time spent on
inferring each input sample or sample batch.
In the profiling, we measure the inference
latency consisting of the upload delay and
model execution delay, when executing an
input sample over a compressed model over
an edge device. Iteratively, we are able to esti-
mate the inference accuracy and latency for all
combinations of model compressions and data
compressions, for all the data distributions
selected for the profiling.

Joint Model Deployment and Data Sampling
The tradeoff between inference accuracy

and latency allows us to use different combi-
nations of model compressions and data com-
pressions to yield similar accuracy and latency
metrics, which provides a new design space for
a joint model deployment, and data sampling
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and request scheduling.
So, we propose to jointly generate different

model versions and compressed data versions
and schedule the input samples under different
compression levels to different model servers.
As such scheduling is based on the accuracy
and latency profiling above, it can satisfy di-
verse requirements in use cases, with different
accuracy and latency requirements, i.e., dif-
ferent accuracy + latency combinations, with
minimized model serving costs. In practical
immersive multimedia applications, the deep
learning models of different versions can be de-
ployed across geo-distributed edge devices so
as to receive inference queries accordingly. In
particular, we formulate the compressed model
deployment and input data sample scheduling
as an optimization program to minimize the
overall costs.

Joint multi-version model deployment and
input data compression and scheduling allow
deep learning inference to power edge infras-
tructure to support immersive multimedia ap-
plications. Next, we present how such edge
intelligence is able to improve multimedia con-
tent replication/caching and learning-based
rate adaptation, and viewport prediction in
360-degree video streaming.

Case Studies for Edge Intelligence Powered
Immersive Media

In this section, we show how conventional
strategies such as content placement and rate
adaptation, can benefit from edge intelligence,
with deep learning and inference from edge
infrastructure; We also present strategies like
viewport prediction which is important in im-
mersive multimedia applications, can be en-
hanced by edge intelligence.

Edge Caching for Multimedia Content
Content placement deploys content close

to users so as to improve the availability of
content nearby, to improve quality of user
experience. In emerging multimedia applica-
tions, “small” content providers (CPs) play
an important role due to the intrinsic diverse
preferences of users [11]. A major difference
between small CPs and traditional CPs is that
small CPs usually allocate resources from both
cloud and edge content delivery networks, in
a pay-as-you-go manner, instead of building
their own infrastructures. Such “content deliv-
ery as a service” with edge-network configura-
tions allows many flexible configurations, e.g.,
scaling cache size and changing the content re-
placement strategies for more dynamic strate-
gies. One potential technical challenge is that
jointly scaling the cache capacity and changing
the content placement strategies require more
sophisticated edge intelligence, as compared to
traditional single-dimension decision.

Edge Learning-based Caching Agent.
We propose an edge-based joint caching strat-
egy. In particular, we design a reinforcement
learning model at edge caches, to jointly and
dynamically tune the edge cache size and re-
placement strategy, with the following major
characteristics.

• Working for dynamical popularity changes.
Small CPs of immersive multimedia ap-
plications usually have dynamical content
deployment patterns, challenging the learn-
ing process of the RL agent. We keep
a dynamically-changing learning window
of historical requests, so that the agent
can learn from both stationary and non-
stationary popularity distributions.

• Supporting different decision spaces. Cache
capacity decision is usually a continuous ac-
tion, and content placement strategy is usu-
ally a categorical variable. To alleviate per-
formance degradation that existing deep re-
inforcement learning algorithms suffer when
there are joint continuous and categorial
actions, an action “fusing” scheme can be
utilized to fuse the different action spaces,
so that they can be adjusted to achieve a
joint performance gain.
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• Deployable at edge devices for fast inference.
To allow fast deployment and inference at
edge devices, we use the model and data
compressions to enable fast content caching
strategies. In trace-driven experiments with
dynamical user requests, the edge learning-
based caching is able to improve the cache
hit rate by over 20% against conventional
size-only solutions, and over 3% against
conventional strategy-only solutions, both
with reduced deployment costs [11].

Learning-based Rate Adaption
Rate adaptation is also an important strat-

egy in immersive multimedia that benefits
from learning-based schemes. In recent years,
learning-based strategies have been recognized
as an effective means to overcome unneces-
sary playback rebuffering and network fluc-
tuation. These strategies do not rely on pre-
programmed models/assumptions about the
environment and gradually learn the policies
for bitrate decisions through observation [12].

Maximizing the quality of experience for
users has been the major purpose for tradi-
tional rate adaptations such as Pensieve [13].
These conventional strategies rely on the in-
formation about video chunk sizes to guide the
adaptation decisions, of which a most impor-
tant prerequisite is future video chunk size.
However, in immersive multimedia applica-
tions with live streaming characteristics, such
information may not be available all the time,
due to the changing content generated real-
time. For example, in scenarios like crowd-
sourced live streaming, the video chunks are
generated and transcoded in real time so the
future video chunk size is unknown ahead.

Chunk Size Prediction with Meta Learning
Intuitively, one can use the average of the
past video chunk sizes as the estimated future
video chunk size, but this leads to large errors
for videos with more dynamical bitrate. Deep
Neural Network (DNN)-based models have
then been designed to predict video chunk size
[14]. For different videos, meta-learning is an
effective way to train similar tiny models fast
[15], for video sessions with different content
characteristics. Based on the predictions, rein-
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Figure 5. An edge viewport predictive framework: a
spherical CNN based 360-degree video feature extrac-
tion network for multi-modular information fusion, and
model compression for edge.

forcement learning-based agents then use the
prediction as state inputs and QoE metrics as
rewards, to adjust future bitrate decisions for
rate adaptation.

Edge Intelligence for RL Adaptation We
propose an edge learning-based rate adapta-
tion framework for immersive live streaming,
by extracting information from videos to pre-
dict the bitrate of the video streaming.
• First, we propose a DNN-based bitrate pre-

diction network of future video chunks us-
ing video coding meta information (e.g., the
residual frames, quantization parameters,
and the division information of macroblocks
in H.264). We pass the meta information
in the encoding process to the model, and
use meta-learning to train the chunk size
prediction network.

• Second, we use deep reinforcement learn-
ing to design a live adaptation framework
based on the bitrate predictions. To achieve
low latency for immersive applications, the
meta learning prediction framework and
RL-based rate adaptation agent are de-
ployed locally on edge devices to make the
rate selection decisions.

Viewport Prediction for 360-degree and VR
Streaming

As an important immersive multimedia
application, 360-degree video streaming has
become popular in various video streaming
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platforms. To improve users’ quality of expe-
rience and engagement, using viewport pre-
diction has become a de facto practice for
content prefetching, and the previous common
practice is to utilize multi-modal information,
including user behaviors, content characteris-
tics and the recent viewing patterns, to im-
prove prediction accuracy [16]. Due to the high
stringent latency requirement and the multi-
modular information needed for viewport pre-
diction, deploying the prediction models close
to users on the edge devices is a promising
solution.

Multi-modular Predictive Network In a
360-degree video view session, a user’s view-
port changing is not only correlated with the
content information but also other informa-
tion including the head motion behaviors of
the user as well as his/her intrinsic prefer-
ences. We propose to jointly use users’ recent
viewing patterns, the visual information, as
well as the motion and preference information
to build a viewport prediction model as fol-
lows.

• Although spherical convolutional neural
networks (CNNs) [17] show certain poten-
tial in processing spherical data, they are
still at an early age and cannot handle
several real-world situations, e.g., they can-
not achieve rotation-invariant convolution
since traditional CNN only has the ability
of translational-invariant convolution. We
propose a dedicated spherical CNN based
360-degree video feature extraction net-
work. As illustrated in Figure 5, it takes in
multi-modular information, including view-
ing behaviors, the video content, and the
head motion patterns.

• We use the user’s personal preference as
a context embedding, which serves as the
spatial attention to the video content, i.e.,
a semantic “relevance” between a particular
region on future video and the user’s prefer-
ence. In particular, we propose to use a con-
volutional recurrent neural network (RNN)-
based feature extraction model to capture
the joint spatial and temporal character-
istics from the sequentialized 360-degree

video frames. It encodes the user preference
by referring to the videos a user has viewed
before, with the RNN model to incorporate
viewing histories so that the model is ex-
pected to represent viewport changes in the
future time window. The proposed model
with near-identity kernel is able to achieve
an accuracy of 65.7%, which outperforms a
model with equatorial kernel [16].

Edge-based Viewport Prediction After the
multi-modular model is customized and
trained for a particular user, we deploy it at an
edge device close to the user for fast inference,
for the purpose to guide content fetching or
other interactions, as illustrated in Figure 5.
The model again is compressed using the
previous practice, according to the expected
accuracy and latency requirement with the
constraint of the edge device computational
capacities.

In Figure 6, we plot the prediction visu-
alization for two selected videos from dataset
UCF1012, which is a representative dataset
of human actions, consisting of realistic user-
uploaded videos with camera motion and clut-
tered background. We use wk to denote the fu-
ture time window (in second) for the viewport
prediction, and a larger wk usually requires a
more powerful prediction capacity.

In this figure, the viewports in the red
rectangles are the ground truth, i.e., real view-
ports captured in the datasets, and the blurred
viewports are the predictions. For a large frac-
tion of the cases, the predictive results are
relatively consistent with the real viewports.
In the “successful” predictions (e.g., 1st, 2nd,
4th in the first row and 3rd and 4th in the
second row), we observe that even with rapid
head movements at wk = 1 and wk = 2,
our model is still able to perform properly.
In the “failure” cases (e.g., 3rd in the first
row and 1st and 2nd in the second row),
the predictive network fails at different head
movement speeds. These findings suggest that
the prediction capability of the design is not
entirely driven by the head movement inten-
sity, but also affected by the visual content

2https://www.crcv.ucf.edu/data/UCF101.php
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wk=1 wk=2 wk=4 wk=8

Figure 6. Performance visualization for the edge view-
port prediction.

itself.

Concluding Remarks
Immersive multimedia services and appli-

cations are emerging, either evolving from
traditional crowdsourced live streaming and
360-degree video streaming, or growing from
augmented and virtual reality applications.
We discussed how some common require-
ments can be satisfied by edge intelligence,
with much lower cost and latency and bet-
ter privacy protection. To unleash the power
of edge computing for immersive multime-
dia, we provided a joint model compression
and data scheduling framework that enables
accuracy- and latency-aware edge intelligence,
with adaptive deep learning model deployment
and data streaming. We also showed that
edge content replication and learning-based
rate adaptation are readily supported by such
edge intelligence. Furthermore, we used a 360-
degree video streaming case to demonstrate
that edge-assisted viewport prediction can be
achieved and used for tile prefetching, leading
to improved quality of user experience in sim-
ilar immersive-media applications.

We have seen exciting development toward
edge intelligence and immersive multimedia
separately and jointly. With the evolution of
today’s multimedia technical stack, we are
seeing new trends for immersive multimedia,
including new video coding such as Versatile
Video Coding (VVC) for 360-degree and VR
video streaming, and the next-generation ad-
vanced mobile communications system, 6G,
which is supposed to provide communication

links to fuse the physical, cyber, and bio-
logical worlds, giving rise to immersive ap-
plications with new possibilities enabled. We
believe there are tremendous imagination and
research opportunities, to realize these visions,
with the hope of making truly high-fidelity,
immersive-interaction, social, and also person-
alized immersive multimedia a reality.
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