
Cost-Effective Low-Delay Cloud Video
Conferencing

Mohammad H. Hajiesmaili∗‡, Lok To Mak†, Zhi Wang§, Chuan Wu¶, Minghua Chen†, and Ahmad Khonsari∗‖
∗ School of ECE, College of Engineering, University of Tehran, Iran

† Department of Information Engineering, The Chinese University of Hong Kong
‡ Institute of Network Coding, The Chinese University of Hong Kong

§ Graduate School of Shenzhen, Tsinghua University
¶ Department of Computer Science, The University of Hong Kong

‖ School of Computer Science, IPM, Iran
Emails: {mohammad,minghua,mlt014}@ie.cuhk.edu.hk,wangzhi@sz.tsinghua.edu.cn,cwu@cs.hku.hk,ak@ipm.ir

Abstract—The cloud computing paradigm has been advocated
in recent video conferencing system design, which exploits the
rich on-demand resources spanning multiple geographic regions
of a distributed cloud, for better conferencing experience. A typ-
ical architectural design in cloud environment is to create video
conferencing agents, i.e., virtual machines, in each cloud site,
assign users to the agents, and enable inter-user communication
through the agents. Given the diversity of devices and network
connectivities of the users, the agents may also transcode the
conferencing streams to the best formats and bitrates. In this
architecture, two key issues exist on how to effectively assign
users to agents and how to identify the best agent to perform a
transcoding task, which are nontrivial due to the following: (1)
the existing proximity-based assignment may not be optimal in
terms of inter-user delay, which fails to consider the whereabouts
of the other users in a conferencing session; (2) the agents may
have heterogeneous bandwidth and processing availability, such
that the best transcoding agents should be carefully identified,
for cost minimization while best serving all the users requiring
the transcoded streams.

To address these challenges, we formulate the user-to-agent
assignment and transcoding-agent selection problems as an op-
timization problem, which targets at minimizing the operational
cost of the conferencing provider while keeping the conferencing
delay low. The problem is combinatorial in nature and difficult to
solve in static settings and more challenging in dynamic settings.
Using the recently-proposed Markov approximation framework
of tackling combinatorial problems, we design a decentralized
algorithm that provably converges to a bounded neighborhood
of the optimal solution and adapts to system dynamics. An
agent ranking scheme is also proposed to properly initialize our
algorithm so as to improve its convergence. We implement a
prototype video conferencing system realizing our algorithms,
and carry out extensive evaluations using real-world traces. In a
set of Internet-scale scenarios, our design reduces the operational
cost by 77% as compared to a commonly-adopted alternative,
while simultaneously yielding lower conferencing delays.

I. INTRODUCTION

As front-facing cameras become popular on personal de-
vices (e.g., laptops, tablets, and smart phones), recent years
have witnessed a skyrocketing growth of video conferencing
(VC) systems on those devices. According to Cisco, the
number of video conferencing users is growing at an annual
rate of 51.7% and will surpass that of audio conferencing
users by 2015 [2]. Another trend has been the advocation
of cloud computing services in multi-party VC systems, to
overcome the constraints of user devices and boosting the

(a) Clinet/Server (b) Peer-to-Peer (c) Cloud

Fig. 1. Different VC architectures

conferencing experience, employing the rich and on-demand
resources provided by a geo-distributed cloud platform.

In a typical cloud-assisted VC system design [10], [17],
illustrated in Fig. 1(c), video conferencing agents, i.e., virtual
machines, are created in each cloud site, and users join a con-
ferencing session by subscribing to those cloud agents. Users
communicate through the agents, which exchange conferenc-
ing streams among each other, transcode the streams to the best
formats and bitrates and deliver them to users with diverse
devices and network connectivities. Such a cloud-assisted
VC paradigm outperforms traditional client/server (C/S) based
(Fig. 1(a)) and P2P-based (Fig. 1(b)) VC approaches, due to
the following:

(i) Meeting stringent delay requirements better. Accord-
ing to ITU-T Recommendation G.114 [11], the maximum
acceptable user-to-user conferencing delay is 400 ms. In a
C/S architecture, clients may often suffer from a long delay
due to considerable distances from the servers, due to limited
deployment of the costly infrastructure. Direct connections
between users in a P2P system may yield lower delays, while
measurements [10] have corroborated that the delay in a cloud-
assisted VC system is comparable or even lower than that.

(ii) Providing more bandwidth and computation capacity
at lower costs. Conferencing devices are diverse in screen res-
olution (≈ 100 possible resolutions), hardware (≈ 2800 types),
and OS (≈ 14 types) [14]. On-the-fly transcoding is demanded
for converting the streams from one format/bitrate to another,
to cater for such device heterogeneity. The C/S architecture
utilizes dedicated servers, but suffers from limited scalability
and high operational costs. The limited capacity of peers in
the P2P design hinders such computation-intensive jobs, and
hence the number of peers allowed in a VC session is often
significantly limited. In contrast, cloud-assisted VC provides
scalability by employing on-demand bandwidth/computation
resources at cloud agents, at a lower cost.



OR TO

SG
SP

45

67
117

81

181
150

1 [CA]

2
[BR]

4
[HK]

3[JP]

27

20

Agents 
Users

Fig. 2. A VC scenario with 4 users (PlanetLab nodes) in 1 session and
4 cloud agents (EC2 instances). Values on edges are real-world measured
latencies. Agents in larger diamonds have higher capabilities. SG: Singapore,
TO: Tokyo, OR: Oregon, SP: Sao Paulo.

Nevertheless, two key challenges still exist in the state-of-
the-art design of cloud-assisted VC, for optimizing both the
operational cost of the service provider and the conferencing
experience of the users. First, current design typically assigns
users to the nearest agents in terms of delay [10], [17], which
may not be optimal in inter-user delay and traffic cost, as
they are oblivious to whereabouts of the other users in a
conferencing session and diversity of transcoding latency in
heterogeneous agents. For example in Fig. 2, user 4 should be
assigned to SG agent following the nearest assignment policy.
However, assigning user 4 to TO agent is better since: (i) the
end-to-end flow delays in this session are reduced because TO
agent is closer to the other 3 agents than SG agent, e.g., the
delay of flow from user 4 to user 1 via TO is at least 27 + 67
while the delay via SG is at least 20 + 117; (ii) since user
3 is assigned to TO agent, assigning user 4 to TO eliminates
any inter-agent stream exchanges with SG agent, leading to
reduced traffic cost as well.

Second, how to identify the best agent to perform a transcod-
ing task, given the heterogeneity of agent VMs, has not been
well studied in the literature. The agents may have diverse
resource availability, leading to different transcoding delays.
The best transcoding agents should be carefully identified, for
cost minimization while best serving all the users requiring
the transcoded streams. For instance in Fig. 2, though we have
shown assigning user 4 to TO agent leads to lower delay and
traffic cost, SG agent is better in terms of transcoding delay,
given that it is more computationally powerful than TO agent.

All the existing studies we are aware of and review in Sec. V
adopt the nearest policy for user-to-agent assignment [10],
[17]. To the authors’ knowledge, this work is the first to simul-
taneously minimize the service provider’s cost and maximize
the user’s experience in a cloud-assisted conferencing system,
by addressing user-to-agent assignment and transcoding task
assignment problems in a unified mathematical framework.
The main contributions of the paper are summarized as fol-
lows:

B We formulate the User-to-agent Assignment Problem
(UAP) (Sec. II), which finds the best user-to-agent assignment
and transcoding task assignment solution to minimize the
overall cost of the service provider and inter-user delay at the
same time, subject to capacity constraints of the heterogeneous
agents and end-to-end delay constraints of the users. The
problem is a nonlinear combinatorial optimization problem,

difficult to solve even in the centralized manner under static
system settings.

B Inspired by the Markov approximation approach [7]
which is a nice technique to construct parallel and adaptive
solutions, we devise an efficient distributed algorithm to solve
UAP, which runs locally in each session and optimizes the
overall assignment (Sec. III-A). Highlights of the algorithm are
its adaptability to system dynamics, bounded approximation
gap, and robustness in case of inaccurate measurements of
transcoding latencies and RTT between nodes.

B We propose a proximity- and resource-aware agent
ranking scheme, called AgRank, as the initialization step of
our algorithm, which further improves the convergence of the
algorithm (Sec. III-B). The scheme features a high success
rate for the initial user-to-agent assignment, i.e., the initial
assignment by AgRank significantly overlaps with the optimal
assignment when the entire algorithm is completed.

B We implement a system prototype and carry out trace-
driven evaluation experiments using PlanetLab nodes and
Amazon EC2 instances (Sec. IV). Observations from the
experiments demonstrate the significant improvement brought
by our solution in both static and dynamic scenarios. In a set
of typical Internet-scale scenarios, our solution simultaneously
reduces the traffic cost and the delay by 77% and 2%,
respectively, as compared to the commonly-adopted nearest
assignment strategy.

II. PROBLEM FORMULATION

Consider a cloud-assisted video conferencing system with
multiple conferencing sessions, each of which is established
among a set of users. Each user in a session records a
video in a specific format/bitrate/resolution (referred to as a
representation), streams it to other users via cloud agents,
and demands streams of specific representations from the
other participants. Along each flow from a source user to a
destination user, the upstream representation produced by the
source may be different from the downstream representation
required by the destination, and transcoding is carried out at
the agents. We proceed with detailed definitions of elements
of our model using the key notation in Table I.

Session and user. Let S be the set of sessions and U be the
set of users. Assuming that each user participates in exactly
one session, we denote the users of session s by U(s) ⊆ U and
the session that user u belongs to by s(u) ∈ S. Let P(u) ⊆
U be the set of other participants in user u’s session, (i.e.,
P(u) = {v|v ∈ U , s(v) = s(u), v 6= u}).

Representation. A representation refers to a specific con-
figuration of format, encoding bitrate and spatial/temporal res-
olution of a stream, e.g., example representations of YouTube
videos are (360p, 1 Mbps), (480p, 2.5 Mbps), (720p, 5 Mbps),
(1080p, 8 Mbps), etc. Let R be the set of all possible
representations of all the users. Based on the access bandwidth
and hardware specification of the device, each user specifies its
upstream representation, ruu ∈ R, which is the representation
of the stream it produces, and downstream representation,
rduv ∈ R, which is its required representation of the stream
from another user v in the session. Let κ(r) denote the
corresponding bit-rate of representation r. We also define
θ = [θuv]U×U as the transcoding matrix, where θuv = 1



Notation Definition
U

se
rs

S Set of VC sessions, S , |S|
U Set of users, U , |U|
U(s) Users of session s
s(u) Session of user u
P(u) Set of other participants in user u’s session

R
ep

re
se

nt
at

io
n R Set of video representations, R , |R|

κ(r) Corresponding bit-rate of representation r
ruu Upstream representation of user u
rduv Downstream repr. of user u from user v
θ U × U transcoding matrix

A
ge

nt
s

L Set of cloud agents, L , |L|
ul Upload capacity of agent l
dl Download capacity of agent l
tl Transcoding capacity of agent l
σl Transcoding latency of agent l
D L× L inter-agent delay matrix
H L× U agent-to-user delay matrix

O
pt

.V
ar

s. λlu
User assignment variable; 1 if user u is assigned to
agent l, 0 otherwise

γlruv
Transcoding task assignment variable; 1 if rdvu = r
and the transcoding is done at agent l, 0 otherwise

TABLE I
KEY NOTATIONS

if source u and destination v are in the same session but
produce/require different representations, i.e., s(v) = s(u) and
ruu 6= rdvu, and θuv = 0, otherwise1.

Cloud agent. Agents, in set L, are virtual machines which
the VC service provider leases from disparate cloud sites
(data centers) in advance. Each agent l ∈ L is described
by a quadruple {ul, dl, tl, σl(.)}, corresponding to its upload
bandwidth capacity (in Mbps), download bandwidth capacity
(in Mbps), transcoding capacity (the number of concurrent
transcoding tasks), and transcoding latency (in ms), respec-
tively. We assume that each agent allocates a fixed amount
of resources (CPU, memory) for each transcoding task, i.e.,
one unit of its transcoding capacity, such that its number of
concurrent transcoding tasks can be derived. The transcoding
latency σl(r1, r2) is an increasing function of the bit-rates
of the input (r1) and output (r2) representations, given that
transcoding is typically done by decoding the source stream to
an intermediate format, and then re-encoding the stream from
the intermediate format to the destination bit-rate [17]. We
assume that the VC provider obtains agent-to-user and inter-
agent delays through active measurements. Let D = [Dlk]L×L
be the inter-agent delay matrix and H = [Hlu]L×U be the
agent-to-user delay matrix, where Dlk is the latency between
agents l and k and Hlu is the propagation delay between agent
l and user u. We have Dll = 0 and Dlk = Dkl, ∀l, k ∈ L, and
we assume the triangle inequality holds for inter-agent delays,
i.e., Dlk < Dll′ + Dl′k, ∀l, l′, k ∈ L, thereby inter-agent
transmission is done by direct transmission between agents.
In practice, these values are subject to change, and thus a
proper design should be robust to tolerate noisy measurements
(Sec. III-A3).

An illustrative example. Fig. 3 illustrates a conferencing
session with 4 users and 3 agents. In Fig. 3(a), when the
upstream representation differs from the downstream represen-
tation, a flow is marked using dotted lines with a transcoding

1Note that θ could be customized to support just high to low quality
transcoding operations by changing the definition of θuv = 1 as s(v) = s(u)
and rdown

vu < ruu , by assuming ordered set of representations in quality.

1

4

2

3

T

T

T

T

TT

rd
12 = rd

13

= rd
14 = 2

rd
31 = rd

32

= rd
34 = 1

rd
21 = rd

23 = rd
24 = 1

rd
41 = rd

42 = rd
43 = 2

ru
2 = 2

ru
1 = 2

ru
3 = 1

ru
4 = 1

(a) Users are labeled by their repre-
sentations. Squares denote transcoding
operations.

1 42 3

1
4

2
3

1
4

2
3

1

32

40

200

200

130
140

120

30

40 50 60 140

20
0

20
0

200
200

{10,10,4,100}

{10,10,8,50} {10,10,8,50}

(b) Agents in diamonds
are labeled with quadruple
{ul, dl, tl, σl}. Links are labeled
with delay.

Fig. 3. A VC Scenario: S = 1, U = 4, L = 3,R = {1, 2}.

task in the middle (e.g., the flow from user 1 to user 3); flows
where the upstream and downstream representations are the
same are depicted using solid lines (e.g., flows between user 2
and user 4). Fig. 3(b) plots a potential user-to-agent assignment
by highlighting the assigned links with thick lines, i.e., users
1, 2 and 3 are assigned to agent 1 and user 4 is assigned to
agent 2.

Optimization variables. Let λlu be the user assignment
variable such that λlu = 1 if user u is assigned to agent l, and
λlu = 0, otherwise. Each user must subscribe to exactly one
agent. Hence λlu’s satisfy the following:∑

l∈L

λlu = 1, ∀u ∈ U , (1)

λlu ∈ {0, 1}, ∀l ∈ L,∀u ∈ U . (2)

Another category of decisions is which agents should per-
form which transcoding tasks. The transcoding from an up-
stream representation to a different downstream representation
can potentially be done at the source agent, the destination
agent, or a tertiary agent.2 Let γlruv be the transcoding
task assignment variable where γlruv = 1 if user v requires
representation r from user u (i.e., rdvu = r) and the transcoding
is done at agent l, and γlruv = 0, otherwise. γlruv’s satisfy
the following constraints:∑

l∈L

∑
r∈R

γlruv = θuv,∀u ∈ U ,∀v ∈ P(u), (3)

γlruv ∈ {0, 1},∀l ∈ L,∀r ∈ R,∀u ∈ U ,∀v ∈ P(u). (4)

Constraint (3) states that transcoding of the flow from u to v is
needed only when θuv = 1, i.e., the upstream and downstream
representations differ, and exactly one agent should carry out
the transcoding to the required representation.

The dimension of our decision space is O(LU+θsum), where
U , θsum, and L are the total numbers of the users, the
transcoding tasks, and the agents, respectively.

Download and upload capacity constraints. For notational
convenience, let νlru , maxv∈P(u) γlruv denote whether
agent l transcodes u’s stream to representation r for at least
one other participant in u’s session (1 yes and 0 no), and
ν′lu , maxr∈R νlru denote whether agent k transcodes u’s

2We do not consider possible parallel transcoding of the same flow at multiple agents
in this work.



stream at all (1 yes and 0 no). The download capacity
constraint of agent l is formulated as∑

u∈U

(
λluκ(ruu) +

∑
k∈L,k 6=l

µklu

)
≤ dl,∀l ∈ L, (5)

where the first term is due to the last-mile upstream of users
who directly subscribe to agent l and the second term depicts
the outgoing traffic of user u from all other agents towards
agent l. Define µklu to represent the download traffic at agent
l due to receiving via another agent k the stream originated
from user u, as follows:

µklu = λkuν
′
luκ(ruu) + ( max

v∈P(u),
θuv=0

λlv)λku(1− ν′lu)κ(ruu)

+
∑
r∈R,
r 6=ru

u

( max
v∈P(u),

rd
vu=r

λlv)(1− λlu)νkruκ(r),

where the first term represents the traffic from u’s agent k to
agent l for transferring u’s stream for transcoding at l, the
second term depicts the traffic of sending the upstream to
other parties, and the last term is the traffic by considering
bit-rate changes after transcoding. Similar to the download
capacity constraint we get the following constraint for the
upload capacity:∑

u∈U

(
λlu

∑
v∈P(u)

κ(rduv)+
∑

k∈L,k 6=l

µlku

)
≤ ul,∀l ∈ L, (6)

Transcoding capacity constraints. Regardless of the number
of destinations, transcoding of user u’s upstream representa-
tion to representation r occupies one unit of the transcoding
capacity of agent l. Hence the transcoding capacity constraint
at l is formulated as follows:∑

u∈U

∑
r∈R

νlru ≤ tl, ∀l ∈ L. (7)

End-to-end delay constraints. The end-to-end delay of a flow
from user u to user v is the aggregation of the following:
(1) propagation delay from u to u’s agent l, Hlu; (2) the
propagation delay between u’s agent and v’s agent, including
two cases: (a) from u’s agent l to v’s agent k directly, Dlk, or
(b) from u’s agent l to a tertiary agent m (for transcoding) and
then to v’s agent k, Dlm+Dmk; (3) from v’s agent k to v, Hkv;
(4) (possibly) the transcoding latency at an agent l, σl(ru

u, r
d
vu).

We ignore any queuing delay at the agents, since our band-
width and transcoding capacity constraints have ensured the
availability of resources for the respective tasks. Employing
the transcoding matrix θ and defining θ̄uv = 1− θuv , we get
the end-to-end delay of flow u→ v as

duv =
∑
l∈L

(λluHlu + λlvHlv)+ θ̄uv

(∑
l∈L

∑
k∈L

λluλkvDlk

)

+θuv

(∑
l∈L

∑
k∈L

∑
r∈R

γlruv

(
Dlk(λku + λkv) + σl(r

u
u, r

d
vu)
))

.

Let Dmax be the maximum acceptable delay, e.g., 400 ms.
The end-to-end conferencing delay constraint is:

duv ≤ Dmax, ∀u ∈ U ,∀v ∈ P(u). (8)

Objective function. We seek to minimize the overall opera-
tional cost of the VC service provider, as well as a delay cost
based on inter-user delays. The operational cost of the provider
contains two parts. (1) Inter-agent bandwidth costs: bandwidth
cost of session s is formulated as G(xs) =

∑
l∈L gl(xls),

where xls =
∑
u∈U(s)

∑
k∈L,k 6=l µklu is the total incoming

traffic to agent l from other agents in session s, and vector
xs = [xls]l∈L. gl(.) is a convex and increasing function. Such
a bandwidth cost only considers inter-agent data transfer, but
not the last-mile traffic to/from users, since the latter is fixed in
all possible user-to-agent assignments. (2) Transcoding cost at
the agents: the overall transcoding cost in session s is similarly
formulated as follows, where yls indicates the number of
transcoding tasks agent l performs in this session and hl(.)
is a convex function

H(ys) =
∑
l∈L

hl(yls), ys = [yls]l∈L, yls =
∑

u∈U(s)

∑
r∈R

νlru.

The delay cost at users in session s is described by function
F (ds), where ds = [du]u∈U(s), du = maxv:u∈P(v) dvu is
the maximum end-to-end delay experienced by user u for
receiving streams from other participants, and F (.) is a convex
and increasing function, e.g., F (ds) = (

∑
u∈U(s) du)/|U(s)|.

The objective function is the sum of the above costs,
weighted by parameters α1, α2 and α3, respectively. Note that
including a delay cost in the objective function is for pushing
conferencing delays experienced by users to be as small as
possible, although we have constrained their upper bound by
(8).
Problem formulation. Putting all pieces together, we cast the
optimization problem as

UAP: min
λlu,γlruv,∀l,r,u,v

∑
s∈S

(α1F (ds) + α2G(xs) + α3H(ys))

s.t. Constraints (1)-(8).

Remarks. Design parameters αi ≥ 0 can be adjusted to
achieve any desired performance/cost trade-off, e.g., larger
α1 leans more towards optimizing conferencing peformance,
while larger α2 and α3 stress operational cost minimization. In
Sec. IV, we will evaluate the impact of these parameters with
experiments. Moreover, separability of the objective function
across the sessions provides a nice opportunity to achieve a
parallel algorithm, to be discussed next.

III. ALGORITHMS AND DISCUSSION

We remark that tackling problem UAP even in a cen-
tralized manner is difficult, due to its combinatorial nature
and persistent dynamics in the system.We prefer a parallel
and adaptive solution —each session solves its assignment
problem locally, such that the solution can scale with the
problem size and adapts to the dynamics. Recently proposed
Markov approximation approach [7] is one technique that
allows us to construct one such solution. The overview of
our solution approach is as follows. First, in Sec. III-A, we
devise a Markov-based parallel and adaptive user-to-agent
assignment algorithm that runs in one agent of each session
(e.g., the session initiator’s agent). The algorithm proceeds
in an iterative fashion and converges to a near optimal as-
signment solution. The original Markov approach may suffer



U2

T

U1 U1

U2

T

U1

U2

T

U1

U2

T

U1

U2

T

U1

U2

T

U1

U2

T

U1

U2

T

U1

U2

T

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

1 2 3 4 5 6 7 8

(a) All 8 feasible assignment solutions, assuming both cloud agents are powerful enough and the end-to-end delays
of both flows are always less than Dmax.

8

7

6

1 2

3

4

5

U1

U2

T

L1

L2

(b) The Markov chain

Fig. 4. A simple VC scenario with 1 session, 2 users, 1 transcoding operation, and 2 agents

slow convergence. Second, in Sec. III-B, we propose a fast
bootstrapping algorithm which achieves a feasible close-to-
optimal initial assignment.

A. Markov Approximation-Based Parallel Algorithm

Generally, the Markov approximation framework tackles
combinatorial optimization problems in a decentralized man-
ner by 1) constructing a class of problem-specific Markov
chains with a target steady-state distribution and 2) investigat-
ing a particular structure of the Markov chain that is amenable
to decentralized implementation.

1) Approximation Framework: Let f = {λ,γ} ∈ F be a
feasible solution to problem UAP, where F is the set of all
feasible solutions, i.e., all assignments that satisfy constraints
(1)-(8). Let Φf denote the objective function value of problem
UAP achieved by solution f and pf denote the percentage of
time that f should be in use. Using these notations we can
rewrite problem UAP as follows:

UAP-EQ: min
pf ,∀f∈F

∑
f∈F

pfΦf ,

s.t.
∑
f∈F

pf = 1.

We can formulate the approximation version, UAP-β, of
problem UAP-EQ using log-sum-exp approximation, where β
is a large positive constant that controls the accuracy of the
approximation [7]:

UAP-β : min
pf ,∀f∈F

∑
f∈F

pfΦf +
1

β

∑
f∈F

pf log pf

s.t.
∑
f∈F

pf = 1.

UAP-β is a convex optimization problem. So we can solve its
KKT conditions and derive its optimal solution

p?f =
exp(−βΦf )∑

f ′∈F exp(−βΦf ′)
, f ∈ F , (9)

and the optimal objective function value

Φ̂ = − 1

β
log
(∑
f∈F

exp(−βΦf )
)
. (10)

Moreover, the optimality gap between the optimal objective
values of UAP-β and UAP is characterized by:

min
f∈F

Φf −
1

β
log |F| ≤ Φ̂ ≤ min

f∈F
Φf . (11)

Note that the approximation gap vanishes as β approaches in-
finity, i.e., the larger β is, the more accurate the approximation
model is. We will further investigate the impact of β on the
performance of our algorithm in Sec. IV.

The idea of introducing the above approximation framework
is to approximate the optimal solution to problem UAP by
time-sharing among its feasible solutions f ∈ F according
to p?f in (9). Towards this, the key is to construct a Markov
chain, which models feasible solutions as states, achieves
stationary distribution p?f ,∀f ∈ F , and allows efficient parallel
construction among the VC sessions.

2) Algorithm Design: Our parallel and adaptive algorithm
pursues the near-optimal assignment solution to problem UAP
by simulating such a Markov chain over time. Especially,
the algorithm starts with a feasible assignment solution f
of UAP, and may transit to another feasible solution f ′

according to the transition rate qf,f ′ . The near-optimal solution
is achieved when the Markov chain converges to the steady-
state distribution p?f in (9). The transition rates should be
carefully computed to achieve this steady-state distribution.
In addition, though we have given the concrete form of p?f
in (9), we should note that it is computed using KKT condi-
tions in a centralized fashion, which requires complete, static
information in the entire system. It adds a further challenge
to compute the transition rates in a parallel fashion (in each
session respectively), in order to achieve the desired overall
stationary distribution.

Based on the theoretical insights from [7], the suffi-
cient conditions in constructing such a Markov chain is to
ensure that in the Markov chain: (i) any two states are
reachable from each other (i.e., the Markov chain is irre-
ducible); and (ii) the detailed balance equation is satisfied,
p?fqf,f ′ = p?f ′qf ′,f ,∀f, f ′ ∈ F .

Sufficiency of these requirements is the key to provide a
large degree of freedom in Markov chain design and leads
to decentralized-friendly Markov implementation. The first
degree of freedom is that we are allowed to set the transition
rate between any two states to zero if they are still reachable
from any other states. In this way, the stationary distribution
of the modified Markov chain distribution is still p?f .

On the other hand, direct transition between two states
corresponds to migration of the system from one feasible
assignment solution to another. To minimize the solution
migration overhead, we allow direct links between two states
in the Markov chain only if the value of exact one decision
variable differs between the two corresponding assignment
solutions. An example Markov chain is depicted in Fig. 4(b)



Algorithm 1: Markov approximation-based assignment
(for each session s)

1 procedure WAIT
2 Generate an exponentially distributed random number

with mean 1
τ and begin countdown according to it

3 while the timer has not expired
4 if Receive a FREEZE message then Pause
5 if Receive a UNFREEZE message then Resume
6 end
7 Invoke HOP
8 end procedure
9 procedure HOP

10 Broadcast a FREEZE message to other sessions
11 Fetch the updated list of residual capacities of agents
12 Fs ← set of all feasible solutions with only one

different decision
13 Migrate to solution f ′ ∈ Fs with probability

proportional to exp( 1
2β(Φs,f − Φs,f ′))

14 Broadcast a UNFREEZE message to other sessions
15 Invoke WAIT
16 end procedure

corresponding to the scenario in Fig. 4(a). Consider feasible
solution 1 in Fig. 4(a) where both users and the transcoding
task are assigned to L1, and feasible solution 2 where both
users are assigned to L1 but the transcoding task is assigned
to L2. They differ by only one assignment decision, so that
there are direct links between state 1 and state 2 in Fig. 4(b).

Second, for two solutions (Markov chain states) f and f ′

with direct transitions, there are many options in designing
transition rates qf,f ′ and qf ′,f . To facilitate parallel Markov
implementation, we design the transition rate between two
states as

qf,f ′ = τ exp
(1

2
β(Φf − Φf ′)

)
= τ exp

(1

2
β(Φs,f − Φs,f ′)

)
,

where Φs,f and Φs,f ′ are the local objective values of session
s (i.e., α1F (ds) + α2G(xs) + α3H(ys)) at solutions f and
f ′, respectively and τ is a positive constant. In our algorithm
based on the value of τ each session initiates a timer and
when timer expires the session chooses another assignment.
The larger τ reduces the convergence of the algorithms, while
it may impose the overhead of frequent assignment migration.
The second equation above shows that we can calculate the
transition rate using the local objective function values of
the sessions, which enables parallel implementation of the
algorithm. The rationale behind is that we allow only one
decision variable’s value to be different between f and f ′.
It is easy to show that this transition rate satisfies the detailed
balance equations.

The procedures of our parallel algorithm are summarized
in Alg. 1. First, we mention that the algorithm is executed
in a representative agent of each session (e.g., the session
initiator’s agent). In HOP procedure, session s migrates to
another feasible assignment with a probability proportional
to the local objective value of the target solution, i.e., the
lower the target objective value is, the more probable the
session is to migration to it. Note that to compute the transition

probability in Line 13, only the knowledge of local objective of
the corresponding session is required, so the algorithm could
be implemented in a fully parallel manner. In WAIT procedure,
if the corresponding agent of session s receives a FREEZE
message, it pauses its countdown, since another session is
migrating, and resumes its countdown afterwards, which is still
exponentially distributed because of the memoryless property
of exponential distribution. This is the rationale that an ex-
ponential count down timer is used. We finally remark that
the FREEZE message is passed as an intra-message within
the cloud agents that operate in synchronized manner in a
single cloud environment. The following proposition shows
that independent of the initial assignment, Alg. 1 converges to
the stationary state with provable convergence time (mixing
time), with proof given in [7]

Proposition 1: Alg. 1 realizes a continuous-time Markov
chain, which converges to the stationary distribution in Eq. (9).

We remark that in some similar approaches like simu-
lated annealing [16], Gibbs sampling, and other Monte Carlo
Markov chain approaches [6], the main idea is to sample a set
of states according to a desired distribution by implementing
a Markov chain that has the desired steady-state distribution.
Hence, these approaches share the idea similar to Markov
approximation. However, unlike Markov approximation, Gibbs
sampling and simulated annealing do not explicitly consider
designing the Markov chain in a way that it can be imple-
mented in a distributed or parallel manner. As such, they can-
not be directly leveraged to design parallel solutions desirable
for our problem. In this paper, we follow Markov approxi-
mation framework to explicitly take into account the parallel
implementation into Markov chain design, and tackle a unique
set of challenges, such as Markov chain connectivity topology
and transition rate design, to achieve Alg. 1. In addition, unlike
the similar approaches that are incompetent against the system
dynamics and noisy measurement of the problem data, Markov
approximation framework can provide theoretical robustness
to both system dynamics and noisy measurements, which is
discussed in details in the next subsection.

3) Robustness to System Dynamics and Noisy Measure-
ments: Our parallel algorithm is robust to variations due to
session dynamics, i.e., addition and completion of a session. In
the case that a new session starts, it can be bootstrapped with
any feasible assignment solution, and then the agent which the
session initiator is connecting to can execute its local algorithm
by starting its countdown process.

In addition, our algorithm also adapts well to inaccurate
measurements of the agent-to-user latencies and transcoding
latencies, which lead to inaccurate values of Φs,f and Φs,f ′

and hence perturbed transition rates of each session s. The
latency values between the users and the agents are per-
turbed, in practice. In addition, transcoding latency is highly
dependent on both content characteristics and agents’ load.
Hence, the transition rate of each session is subject to the
perturbation with inaccurate values of both Φs,f and Φs,f ′ .
Consequently, with perturbed values of objective function,
Alg. 1 may converge to a sub-optimal steady-state distribution.
Fortunately, our employed theoretical approach can provide a
bound on the optimality gap due to the perturbation errors
using a quantization error model.



We assume the perturbed Φf takes only one of the following
discrete values
[Φf −∆f , . . . ,Φf −

1

nf
∆f ,Φf ,Φf +

1

nf
∆f , . . . ,Φf + ∆f ]

and the perturbed Φf takes the value Φf + j/nf∆f with
probability ηj,f and

∑nf

j=−nf
ηj,f = 1, where ∆f is the error

bound on configuration f and nf is a positive constant.
Theorem 1: The stationary distribution of the perturbed

assignment-hopping Markov chain is

p̄f =
δf exp(−βΦf )∑

f ′∈F δf ′ exp(−βΦf ′)
, ∀f ∈ F , (12)

where δf =
∑nf

j=−nf
ηj,f exp(β

j∆f

nf
), and optimality gaps are

0 ≤ Φavg − Φmin ≤ (U+θsum) logL
β , (13)

0 ≤ Φ̄avg − Φmin ≤ (U+θsum) logL
β + ∆max, (14)

where θsum =
∑
u∈U

∑
v∈U θuv is the total number of

transcoding tasks, ∆max = maxf∈F ∆f is the maximum
perturbation error, Φmin = minf∈F Φf is the optimal value
of UAP, Φavg =

∑
f∈F p

?
fΦf is the expected objective with

the original Markov chain, and Φ̄avg =
∑
f∈F p̄fΦf is the

expected objective with the perturbed Markov chain.
The proof is relegated to Appendix A. Note that

Eqs. (13) and (14) signify when β increases the optimality
gap of the perturbed Markov chain decreases. But, the larger
β values may increase the convergence time of Alg. 1 [21].
Moreover, the bounds are independent of the specific values
of configurations, i.e., nf and ηj,f .

B. AgRank Algorithm

We proceed to design an agent ranking algorithm for
identifying a good starting feasible assignment solution, for
bootstrapping the Markov approximation-based algorithm. The
intuition is that if Alg. 1 can start from a close-to-optimal
assignment, not only high-quality conferencing experience can
be provided to the users starting from the beginning, but also
fast convergence of the algorithm can be achieved.

In a nutshell of the algorithm which we refer to as AgRank,
upon the start of a session, a potential agent of the session
(e.g., the nearest agent to the session initiator) identifies a set
of potential agents, ranks the agents, and assigns the users and
transcoding tasks based on the ranking. Based on the example
in Fig. 2, inter-agent delay is important in agent ranking, in
addition to the agents’ residual capacities and user-to-agent
delay. The design of AgRank is motivated by the idea of
Google’s PageRank [4] and topology-aware node ranking in
virtual network embedding [9] and is summarized in Alg. 2.

Constructing the potential agent list. In the first step, a
set of top nngbr closest agents, N (u), for user u are picked
as the possible agents and then the set of potential agents of
the session, N (s), is constructed by putting together N (u)
of all users (Lines 1-6). The parameter nngbr ∈ [1, L] is the
maximum number of potential agents for each user that could
be set on a per-session or per-user basis. Setting nngbr = 1
yields the nearest assignment and nngbr = L results in
subscribing all users to the highest ranked agent.

Agent Ranking. The second step is to rank the potential
agents based on a random walk model [4]. We define the initial

Algorithm 2: AgRank (for each session s)

1 N (u)← ∅ // set of potential agents of user u

2 N (s)← ∅ // set of potential agents of session s

3 foreach user u ∈ U(s) do
4 N (u)← top nngbr nearest agents to u in L.
5 N (s)← N (s) +N (u)
6 end
7 ε > 0, t← 0

8 Initialize πl[0] = ûl+d̂l+t̂l+σ̂l∑
k∈L ûk+d̂k+t̂k+σ̂k

, l ∈ N (s)

// ûl, d̂l, t̂l,and σ̂l are the normalized residual
quadruple of agent l

9 repeat
10 πT [t+ 1]← πT [t]D̂
11 δ ← ‖π[t+ 1]− π[t]‖
12 t← t+ 1
13 until δ < ε
14 π? ← π[t]
15 foreach user u ∈ U(s) do
16 Assign u to lsel

u ← arg maxl∈N (u) π
?
l

17 end

ranking of agent l ∈ N (s) as in Line 8, based on the nor-
malized residual quadruple of agent l. In this way, the initial
ranking of the agents is aware of the resource availability of
the potential agents which turns AgRank into a resource-aware
algorithm. Let D̂ = [D̂lk]|N (s)|×|N (s)| as normalized inter-
agent delay matrix where D̂lk = (minl′,k′∈N (s)Dl′k′)/Dlk,
and π = [πl]l∈L be the vector of agent ranks. The rank
vector is updated iteratively with πT [t+ 1] = πT [t]D̂, whose
rationale is to capture inter-agent delay in ranking and find
the optimal agent ranks (Lines 7-14). It has been shown that
this iterative procedure converges very fast to a unique vector
π? = [π?l ]l∈L, as optimal agent ranks [4].

User and transcoding assignment. Next, user u is assigned
to the highest ranked agent within the set N (u) (Line 16).
For transcoding task assignment, we apply the rule of thumb
that when there are at least two destinations with the same
downstream representations for the outgoing flow of a par-
ticular user, assigning the respective transcoding task at the
source agent is a good solution, whose transcoded stream can
be served to more than one destination. One may imagine
several other schemes for assigning the transcoding tasks, but
here we are only seeking a good feasible one.

C. Discussion

Real-time assignment migration without user experience
degradation. Alg. 1 converges to a bounded neighborhood
of the optimal solution at the expense of imposing over-
head to establish the new assignments. In each migration, a
momentary interruption in conferencing experience might be
happened as a consequence of switching the outgoing and
the incoming traffics into the new cloud agent. To provide
migration without user experience degradation, VC provider
can keep both the new and the old assignments active during
switching procedures by bearing some intermittent redun-
dant transmissions. Moreover, exploiting segmentation-based
transcoding approaches [12], transcoding migration can be



done by terminating the current segment and initiating the
transcoding of the new segment in the new agent. We mention
the implementation details in Sec. IV.

Complexity Analysis. At each iteration of Alg. 1, a repre-
sentative agent of session s (e.g., the session initiator’s agent)
computes all feasible solutions with only one different decision
with a time complexity of O(|U(s)|2L). We further note that
to compute the transition probability in Line 13 of Alg. 1,
it only needs to have the knowledge of local objective of
the corresponding session, so the algorithm could be imple-
mented in a fully parallel manner without requiring the global
knowledge of the network. The iterative scheme in AgRank
yields precision ε with the number of iterations proportional
to max{1,− log ε} [4]. Constructing candidate agents, user
assignment, and transcoding assignment takes a computation
time of O(|U(s)|L logL), O(|U(s)|) and O(|U(s)|2), respec-
tively.

IV. PERFORMANCE EVALUATION

We evaluate the performance of our algorithms using:
1) a set of experiments based on prototype implemen-
tation of a real-world cloud-assisted conferencing system
(Sec. IV-A), and 2) a set of large-scale trace-driven experi-
ments (Sec. IV-B). We compare our solution to the nearest
assignment policy (Nrst) (that is the assignment policy in
Airlift [10] and vSkyConf [17]). For detailed illustration, we
report the inter-agent traffic (corresponding to the operational
cost) and the conferencing delay separately as the performance
metrics, even though the objective is a weighted combination
of them. As for the conferencing delay, we report the average
delay of all users. For the end-to-end delay constraint (8), we
set Dmax = 400 ms according to ITU-U G.114 [11].

A. Experiments on Prototype System
1) Prototype Overview and Setup.: We implement the

cloud-assisted VC prototype software using the asynchronous
networking paradigm in C++, and employ the OpenCV li-
brary [1] to capture video frames of device cameras in two
representations and to transcode the streams. 6 Linux-based
EC2 instances in different regions are employed as the cloud
agents. A VC software is installed on them to execute our
algorithms and to exchange and transcode the streams. Unless
otherwise specified, we set the capacity of agents to be large
enough and the transcoding latency of agents are in [30, 60]
ms, depending on the processing capabilities. Conferencing
users are distributed in 10 locations (5 in North America, 4 in
Asia, and 1 in Europe) using different operating systems. A
lightweight conferencing software is installed on users that
only transfers the video streams to/from an EC2 instance.
We remark that the associated agent to the initiator of each
session is responsible for executing Alg. 1 and AgRank, hence
by migrating the execution of the algorithms to the cloud
agents, no additional overhead is imposed to the client devices.
Finally, we have launched 10 actual conferencing sessions,
each with 3–5 participants.

We choose β = 400 in Alg. 1 which is proportional to the
logarithm of the problem state space [7]. The countdown timer
is set to 10 seconds, i.e., Alg. 1 executes every 10 seconds in
each session on average. In each iteration, the assignment of

either one user or one transcoding task is changed. When user-
to-agent assignment migration is in progress, if we instantly
tear down the old assignment, the other participants in the
session experience streaming interruption (e.g., a frozen screen
for a short period as 2-3 frames are delayed in a 30 fps video
rate). We resolve such interruptions as follows: The migrated
client sends its stream to both the old and the target agents for a
short time interval (less than 30 ms on average according to the
user-to-agent distances). This results in some overhead traffic
that could be considered as the migration cost of the algorithm,
whose volume (around 13.2 Kb corresponding to the 240p
representation) is negligible as compared to the amount of
traffic reduction after migration.

50 100 150 200
0

5

10

15

20

25

In
te

r−
a

g
e

n
t 

T
ra

ff
ic

 (
M

b
p

s
)

Time (s)

 

 

β = 200
β = 400

(a) Inter-agent traffic

50 100 150 200
260

270

280

290

300

310

320

C
o

n
fe

re
n

c
in

g
 D

e
la

y
 (

m
s
)

Time (s)

 

 

β = 200
β = 400

(b) Conferencing delay

Fig. 5. Evolution of traffic and delay over time (200 seconds) by executing
Alg. 1 with different βs and Nrst for initial assignment

In Figs. 5-9, the initial cost/delay values at time 0 are results
of either the Nrst or AgRank assignment policies, and running
Alg. 1 following the initial assignment reduces them over time.

2) Traffic and Delay Reduction of Alg. 1: Fig. 5 demon-
strates that Alg. 1 achieves significantly traffic and delay
reduction, as compared to the initial assignment by Nrst,
and converges in about 180 seconds. The fluctuations in the
delay/traffic values are due to perturbations on actual data and
assignment migrations. Comparing results of different βs in
Fig. 5, we see that Alg. 1 with a lower value of β converges to
the optimal assignment more slowly with higher fluctuations.
In a dynamic scenario (Fig. 6), there are 6 sessions initially, 4
more sessions arrive at t = 40, and 3 sessions depart at t = 80.
We can see that the algorithm adapts well to the dynamics by
converging to new stable assignment solutions.

3) Effectiveness of AgRank: Comparing the initial traf-
fic/cost values in Fig. 7 and Fig. 5, we can see that AgRank
performs better than Nrst – 15 Mbps vs. 22 Mbps inter-agent
traffic, with similar conferencing delays. In addition, starting
from a close-to-optimal initial assignment by AgRank, Alg. 1
converges faster, i.e., obtained values at 100th second using
AgRank for initial assignment are almost the same as those at
200th second with Nrst. We also note that although AgRank
is an iterative algorithm, it is a fast algorithm, e.g., it takes
less than 200 ms to find the optimal ranking of the agents
upon session arrival on average in a micro EC2 instance. We
finally remark that due to the parallel algorithm design, the
convergence of the algorithm is independent of the number of
users. In addition to AgRank that is a proper algorithm that
reduces the convergence time of Alg. 1, the other candidate
parameter to further reduce the convergence is the countdown
parameter that may increase the migration overhead of the
algorithm.



20 40 60 80 100 120
2

4

6

8

10

12

14

16
In

te
r−

a
g

e
n

t 
T

ra
ff

ic
 (

M
b

p
s
)

Time (s)

Session Arrival

Session Departure

(a) Inter-agent traffic

20 40 60 80 100 120
250

260

270

280

290

300

310

320

C
o

n
fe

re
n

c
in

g
 D

e
la

y
 (

m
s
)

Time (s)

Session Arrival

Session Departure

(b) Conferencing delay

Fig. 6. Evolution of traffic and delay over time by executing Alg. 1 with
β = 400 in the presence of session arrival/departure

20 40 60 80 100
0

5

10

15

20

In
te

r−
a

g
e

n
t 

T
ra

ff
ic

 (
M

b
p

s
)

Time (s)

(a) Inter-agent traffic

20 40 60 80 100
260

270

280

290

300

310

320

C
o

n
fe

re
n

c
in

g
 D

e
la

y
 (

m
s
)

Time (s)

(b) Conferencing delay

Fig. 7. Evolution of traffic and delay over time (100 seconds) by executing
Alg. 1 with β = 400 and AgRank with nngbr = 2 for initial assignment

4) Case Study: While the previous figures show aggre-
gate results in the entire system with 10 sessions, we study
per-session results in Figs. 8-9. The initial assignments are
obtained using the Nrst policy. First, per-session results are
depicted in Fig. 8. Comparing values clearly shows that Alg. 1
reduces both inter-agent traffic and the average delay of users
for all sessions. Second, in Fig. 9 we report the performance
of 3 sample sessions in more details. For example, in session
8, 4 users subscribe to 3 different EC2 instances in Tokyo,
Singapore, and Ireland initially, but soon all users are migrated
to the Tokyo agent, resulting in zero inter-agent traffic. Due to
the probabilistic nature of the system, a session may migrate to
a worse assignment for some time, e.g., migration of session
9 at t = 131, but can recover soon, e.g., session 9 migrates
back to the optimal assignment at t = 141.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

In
te

r−
a

g
e

n
t 

T
ra

ff
ic

 (
M

b
p

s
)

Session Index

 

 

Initial
Average
Last

(a) Traffic per session

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

C
o

n
fe

re
n

c
in

g
 D

e
la

y
 (

m
s
)

Session Index

(b) Delay per session

Fig. 8. Per-session improvements

B. Large-Scale Trace-Driven Experiments

1) Experimental Setup: We proceed to carry out Internet-
scale experiments using 256 PlanetLab nodes as the users
and 7 EC2 instances as the agents. We use the user-to-agent
and inter-agent delays (approximately RTTs divided by 2)
from [3], [18], where the RTTs are measured for 5 weeks
at a granularity of one ping per second. 4 representations,

50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

In
te

r−
a

g
e

n
t 

T
ra

ff
ic

 (
M

b
p

s
)

Time (s)

 

 

Session 1 (5 users)

Session 8 (4 users)

Session 9 (3 users)

(a) Inter-agent traffic

50 100 150 200
150

200

250

300

350

400

C
o

n
fe

re
n

c
in

g
 D

e
la

y
 (

m
s
)

Time (s)

 

 

Session 1 (5 users)

Session 8 (4 users)

Session 9 (3 users)

(b) Conferencing delay

Fig. 9. Evolution of traffic and delay with Alg. 1 for the case of 3 sample
sessions with different number of users

Alg. Cost Init. Alg. 1

α2 = 0
(delay only) α1 = α2

α1 = 0
(traffic
only)

Nrst Traffic 1443 979 829 521
Delay 166 149 150 209

AgRank Traffic 384 499 335 296
Delay 176 162 163 214

TABLE II
THE IMPACT OF DESIGN PARAMETER α ON ALG. 1

360p, 480p, 720p, and 1080p are exploited and a sparse
transcoding matrix is considered such that 80% of users
demand for 720p and only 20% demand for the others. The
other parameter settings are the same as in the previous
experiments, unless otherwise specified. In each experiment,
we generate 100 random scenarios and plot the average results.
In each scenario, there are 200 users in total (picked randomly
from 256 PlanetLab nodes), who join different sessions, while
each session has at most 5 users.

2) Impact of Design Parameters: The result is summarized
in Table II. When α1 = α2, Alg. 1 using Nrst (AgRank)
for initial assignment simultaneously reduces the traffic and
delay from those of the commonly-adopted policy Nrst by 42%
(77%) and 10% (2%), respectively. In addition, initialization
by AgRank reduces the traffic by 73% at the expense of 6%
longer conferencing delay in comparison with those in Nrst,
while the longer delay could be compensated by Alg. 1. These
observations corroborate our claim that the nearest policy
yields neither minimal delay nor minimal operational cost, and
our user-to-agent assignment design can significantly improve
the conferencing experience and reduce the operational cost as
a “win-win” solution for both the users and the conferencing
provider. In addition, results in Table II clearly reveal that
paying more attention to one part of the hybrid objective
function may sacrifice the other. This justifies that the hybrid
structure of the objective function is vital in design.

400 500 600 700 800 900
0

20

40

60

80

100

%
 o

f 
S

u
c
c
e

s
s
fu

l 
S

c
e

n
a

ri
o

s

Mean Bandwidth Capacity (Mbps)

 

 

AgRank#3

AgRank#2

Nrst

(a) different bandwidth capacities

20 30 40 50 60
0

20

40

60

80

100

%
 o

f 
S

u
c
c
e

s
s
fu

l 
S

c
e

n
a

ri
o

s

Mean Transcoding Capacity (#)

 

 

AgRank#3

AgRank#2

Nrst

(b) different transcoding capacities

Fig. 10. Comparison of AgRank and Nrst



2 4 6
0

500

1000

1500
In

te
r−

a
g

e
n

t 
T

ra
ff

ic
 (

M
b

p
s
)

nngbr

(a) Inter-agent traffic

2 4 6
150

160

170

180

190

200

C
o

n
fe

re
n

c
in

g
 D

e
la

y
 (

m
s
)

nngbr

(b) Conferencing delay

Fig. 11. The impact of nngbr on AgRank

3) The Details of AgRank: The previous results showed
that AgRank significantly outperforms Nrst by reducing the
initial traffic cost. This reduction could be translated into an
increased success rate of the initial assignment, i.e., all users
in the system can successfully subscribe to agents, by serving
more sessions with limited capacities of the agents. In Fig. 10,
we show the percentage of successfully initialized scenarios
(out of 100 random scenarios), with two versions of AgRank,
AgRank#2 with nngbr = 2 and AgRank#3 with nngbr = 3, and
Nrst under different average bandwidth capacities (Fig. 10(a),
unlimited transcoding capacity) and transcoding capacities of
the agents (Fig. 10(b), unlimited bandwidth capacity). We
observe that with AgRank#3, all 100 random scenarios can be
successfully initialized under average bandwidth capacity 750
Mbps, while with the resource-oblivious Nrst, only 8% of the
randomly generated scenarios can be successfully initialized.
The higher success rates of AgRank#3 than AgRank#2 show
that picking among a larger number of potential agents pro-
vides a larger feasible set. To explore this further, we compare
the performance of AgRank under different values of nngbr in
Fig. 11. Clearly, nngbr = 1, by which AgRank is equivalent to
Nrst, yields the highest traffic cost. With nngbr = L, all users
of each session are subscribing to one agent and hence suffer
from long conferencing delays.

V. RELATED WORK

Before the upsurge of the cloud paradigm, P2P was deemed
as an alternative to the client/server model. In [8], a P2P-based
VC problem is tackled in utility maximization framework.
However, the lack of powerful nodes in P2P hinders proper ex-
ecution of high processing tasks. The idea of exploiting cloud
bandwidth resources for VC is first proposed in Airlift [10].
Next, the authors in [17] employ the processing power of cloud
for transcoding, in addition to the bandwidth resources. As
mentioned before, these works adopt the nearest assignment
policy which suffers from excessive resource usage. In very
recent work [20], the authors propose a server placement and
topology control approach to only minimize the latency in
transcoding-free VC, without considering provider’s cost.

Using the virtual network embedding paradigm [9] in [13],
a primal-dual algorithm is proposed for resource allocation in
real-time multimedia that could be customized to encompass
video conferencing. Different from [13], here, deep study of
problem UAP disclosed a difficult non-linear optimization
problem that makes finding the solution using primal-dual ap-
proach incompetent. The idea of migration and re-optimizing
the current configuration have been widely used in virtual
networking problems for ameliorating the acceptance rate of

vitrual networks [19], energy saving [15], etc. These goals
could also be imagined as additional motivations of assignment
migration in our problem.

VI. CONCLUSIONS

This paper addressed the cloud-assisted VC problem from
the perspectives of user-to-agent assignment and transcoding
task assignment, with the goal of designing a joint cost
effective and low delay solution. Two successive algorithms
are proposed: a decentralized algorithm to optimize the assign-
ment tasks and a bootstrapping algorithm to achieve a close-to-
optimal initial point for the former. Observations on extensive
experiments corroborated our claim that user assignment is
a critical design choice that results in a big difference in
system performance. Experimental results demonstrated the
superiority of our design compared to the existing work in
terms of reduced delay and cost, and thus makes it as viable
win-win solution for both the users and the VC service
provider.

REFERENCES

[1] http://opencv.org/.
[2] Cisco VNI service adoption forecast, 2012–2017. White Paper, Febru-

ary, 2013.
[3] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and

I. Stoica. Highly Available Trans.: virtues and limitations. In VLDB,
2014.

[4] M. Bianchini, M. Gori, and F. Scarselli. Inside PageRank. ACM Trans.
on Int. Tech., 5(1):92–128, 2005.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[6] P. Bremaud. Markov chains: Gibbs fields, Monte Carlo simulation, and
queues, volume 31. springer, 1999.

[7] M. Chen, S. C. Liew, Z. Shao, and C. Kai. Markov approximation
for combinatorial network optimization. IEEE Trans. Inf. Theory,
59(10):6301–6327, 2013.

[8] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li. Celerity: A low-
delay multi-party conferencing solution. In ACM Multimedia, pages
493–502, 2011.

[9] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang.
Virtual network embedding through topology-aware node ranking. ACM
SIGCOMM Comp. Comm. Rev., 41(2):38–47, 2011.

[10] Y. Feng, B. Li, and B. Li. Airlift: Video conferencing as a cloud service
using inter-datacenter networks. In IEEE ICNP, 2012.

[11] ITU-T. G. 114. One-way transmission time, 18, 2000.
[12] F. Jokhio, A. Ashraf, S. Lafond, I. Porres, and J. Lilius. Prediction-based

dynamic resource allocation for video transcoding in cloud computing.
In IEEE PDP, 2013.

[13] J. Liao, P. Chou, C. Yuan, Y. Hu, and W. Zhu. Online allocation
of communication and computation resources for real-time multimedia
services. IEEE Trans. Multimedia, 15(3):670–683, 2013.

[14] Y. Liu, F. Li, L. Guo, B. Shen, and S. Chen. A server’s perspective
of internet streaming delivery to mobile devices. In IEEE INFOCOM,
pages 1332–1340, 2012.

[15] E. Rodriguez, G. Alkmim, D. Batista, and N. da Fonseca. Live migration
in green virtualized networks. In IEEE ICC, pages 2262–2266, 2013.

[16] P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. Springer,
1987.

[17] Y. Wu, C. Wu, B. Li, and F. C. Lau. vSkyConf: Cloud-assisted multi-
party mobile video conferencing. In ACM SIGCOMM Workshop on
Mobile Cloud Computing, pages 33–38, 2013.

[18] Z. Wu and H. V. Madhyastha. Understanding the latency benefits of
multi-cloud webservice deployments. ACM SIGCOMM Comp. Comm.
Rev., 43(1):13–20, 2013.

[19] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network
embedding: Substrate support for path splitting and migration. ACM
SIGCOMM Comp. Comm. Rev., 38(2):17–29, 2008.

[20] S. Zhang, D. Niu, Y. Hu, and F. Liu. Server selection and topology
control for multi-party video conferences. In ACM NOSSDAV, 2014.

[21] S. Zhang, Z. Shao, M. Chen, and L. Jiang. Optimal distributed P2P
streaming under node degree bounds. IEEE/ACM Trans. Netw., 22(3),
2014.



APPENDIX

A. Proof of Theorem 1
To prove, first we should prove that the stationary distri-

bution of the perturbed Markov chain is Eq. (12), this part
is very similar to the proof in [21] and hence we proceed to
prove Eqs. (13)-(14).

Let us define the dirac distribution as follows

p̂f =

{
1 if f = fmin,
0 otherwise.

where fmin is the optimal solution of problem UAP (i.e.,
fmin = arg minf∈F Φf ). In addition, p?f as defined in Eq. (9)
is the optimal solution for problem UAP-β. Hence, using the
result is Eq. 11 we have

∑
f∈F

p?fΦf +
1

β

∑
f∈F

p?f log p?f ≤
∑
f∈F

p̂fΦf +
1

β

∑
f∈F

p̂f log p̂f .

(15)

By Jensen’s inequality [5] we get

−
∑
f∈F

pf log pf =
∑
f∈F

pf log
1

pf
(16)

≤ log

∑
f∈F

pf
1

pf

 = log |F|. (17)

Moreover, we have Φavg =
∑
f∈F p

?
fΦf and

Φmin =
∑
f∈F p̂fΦf , by combining these equations we

get

Φavg ≤ Φmin +
1

β
log |F|. (18)

We know that |F| ≤ LU+θsum

, where U , θsum, and L are
the total numbers of the users, the transcoding tasks, and the
agents, respectively, hence

0 ≤ Φavg − Φmin ≤ (U + θsum) logL

β
. (19)

The above equation proves the inequality in Eq. (13).
In the next step, we prove the optimality gap of the

perturbed Markov chain as characterized in Eq. (14). By
reformulating Eq. (13) for the perturbed Markov chain we
have ∑

f∈F

p̄fΦ′f − min
f ′∈F

Φ′f ≤
(U + θsum) logL

β
, (20)

where Φ′f is the modified objective function of problem
UAP-β in perturbed setting and is defined as Φ′f = Φf− log δf

β ,
then by substituting the value of Φ′f in Eq. (20) we get

∑
f∈F

p̄f (Φf−
log δf
β

)−min
f ′∈F

(Φf−
log δf
β

) ≤ (U + θsum) logL

β
,

(21)

In addition, since ∆max is the maximum perturbation error,
we have δf ≤ exp(β∆max), f ∈ F and hence

log δf
β
≤ ∆max, f ∈ F . (22)

Finally, we have Φ̄avg =
∑
f∈F p̄fΦf and then by combining

Eq. (21) and Eq. (22), we get

0 ≤ Φ̄avg − Φmin ≤ (U + θsum) logL

β
+ ∆max. (23)

This proves the inequality in Eq. (14).


