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a b s t r a c t 

Recently, text-to-image synthesis has achieved great progresses with the advancement of the Genera- 

tive Adversarial Network (GAN). However, training the GAN models requires a large amount of pairwise 

image-text data, which is extremely labor-intensive to collect. In this paper, we make the first attempt 

to train a text-to-image synthesis model in an unsupervised manner, which does not require any hu- 

man labeled image-text pair data. Specifically, we first rely on the visual concepts to bridge two inde- 

pendent image and sentence sets and thereby yield the pseudo image-text pair data, based on which 

one GAN model can thereby be initialized. One novel visual concept discrimination loss is proposed to 

train both generator and discriminator, which not only encourages the image expressing the true lo- 

cal visual concepts but also ensures the noisy visual concepts contained in the pseudo sentence being 

suppressed. Afterwards, one global semantic consistency regarding to the real sentence is used to adapt 

the pretrained GAN model to real sentences. Experimental results demonstrate that our proposed un- 

supervised training strategy is able to generate favorable images for given sentences, which even out- 

performs some existing models trained in the supervised manner. The code of this paper is available at 

https://github.com/dylls/Unsupervised _ Text-to-Image _ Synthesis . 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recently, synthesizing images from natural language descrip-

ions [1,2] has been attracting more and more attentions in re-

earch communities, due to its great importance in many practical

pplications, such as cross-modal retrieval [3–6] , captioning [7–10] ,

mage manipulation [11] , industrial design [12] , and so on. 

Most prevailing models for the text-to-image synthesis relies

n recently proposed Generative Adversarial Network (GAN) [13] ,

hich is usually realized in an encoder-decoder-discriminator ar-

hitecture. The input sentence is first encoded as one latent vec-

or and injected into one decoder to produce photo-realistic im-

ge [2,14,15] . The discriminator is used to ensure that the gener-

ted image is not only visually realistic but also semantically con-

istent with the input sentence. 
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For example, Reed et.al [14] first utilize a GAN to gener-

te one realistic image conditioned on the visually-discriminative

ector representation of one text description. StackGAN [16] and

tackGAN++ [17] improve the generated image quality by stack-

ng multiple GANs, where low-resolution and high-resolution im-

ges are generated stage-by-stage. AttnGAN [2] attempts to pay

ore attentions on different sub-regions conditioned on differ-

nt words at different stages. Recently, in order to eliminate

he ambiguity of the textual descriptions for generating im-

ges and thereby relieve the difficulties of text-to-image syn-

hesis task, the scene graph [18] or image layout [19] is taken

s the input to generate visually pleasant images, which se-

antically corresponds to the input scene graph or layout. Al-

hough great progresses have been achieved, in order to train a

AN for synthesizing images conditioned on the text/layout/scene

raph, a large amount of image-sentence (or image-layout or

mage-scene graph) pairs is inevitably needed. However, com-

ared with image classification, collecting and annotating image-

entence pairwise data is much more complicated and labor-

ntensive. Therefore, how to relieve the dependency on man-

ally annotated pairwise data for the text-to-image synthesis

https://doi.org/10.1016/j.patcog.2020.107573
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task becomes increasingly important, which deserves further

investigations. 

Training a text-to-image synthesis model in an unsupervised

manner with no manually annotated image-text pairwise data is

very difficult. Different from the supervised approaches focusing on

designing more effective visual-textual interaction models to im-

prove the visual quality of generated images, unsupervised text-to-

image synthesis is still far from being fully explored, which issues

new challenges. First, the most critical challenge is how to train

a reliable generative model and make it work without any manu-

ally labeled image-text pair data. Second, how can we ensure that

the generated images express the local visual concept information,

which is contained in the input text. Third, how can we guarantee

that the generated image is both visually realistic and semantically

consistent with the input text. 

In this paper, we make the first attempt to tackle the unsuper-

vised text-to-image synthesis task to further address the aforemen-

tioned challenges. More specifically, we start with mining visual

concepts from one external sentence corpus and thereafter train

one concept-to-sentence generation model. Based on the concept-

to-sentence model, a pseudo sentence for each image is produced

based on the visual concepts detected from the image. Afterwards,

the generated pseudo image-text pairs are used to train one text-

to-image generative model in one supervised manner, where a

novel visual concept discrimination loss is proposed to encourage

the generated image to not only express the visual concept infor-

mation but also suppress the noisy concepts contained in the gen-

erated sentence. Moreover, one global semantic consistency loss

is used to readjust the generative models with real sentence cor-

pus, which further enhances the semantic consistency between the

generated image and input real sentence. 

In summary, our contributions lie in three-fold. 

• To the best of our knowledge, we make the first attempt to

train one text-to-image synthesis model in an unsupervised

manner, with no reliance on any human labeled image-text pair

data. 
• A novel visual concept discrimination loss is proposed to train

both generator and discriminator, which not only encourages

the generated image expressing the local visual concepts but

also ensures the noisy visual concepts contained in the pseudo

sentence being suppressed. One global semantic consistency

loss is used to ensure that the generated image semantically

corresponds to the input real sentence. 
• Experimental results on the public MSCOCO dataset demon-

strate that our proposed model can generate one favorable im-

age for one given sentence, with no reliance on any image-text

pair data, which even outperforms some text-to-image synthe-

sis models trained in the supervised manner. 

2. Related work 

2.1. Text-to-image synthesis 

Text-to-image synthesis is newly emerged research area and

has been drawing more and more attention in recent years. As a

pioneer work, Reed et al. [14] introduced a GAN-based architec-

ture to generate images conditioned on the visually-discriminative

representation of an input text. Although the method has shown

great potential of GAN in synthesizing photo-realistic image rele-

vant to the text descriptions, the generated images were restricted

to a low resolution of 6 4 ×6 4. To generate images with higher reso-

lution, StackGAN [16] and StackGAN++ [17] stacked multiple GANs

to generate images from low-resolution to high-resolution stage-

by-stage. Based on the multi-stage strategy, AttnGAN [2] attempted

to draw more details of sub-regions conditioned on different words
t different stages. Gao et al. [20] proposed a pyramid framework

hich utilizes one generator to directly synthesize high-quality im-

ges, with three discriminators regularizing the generated images

t different scales. MirrorGAN [21] proposed to re-describe the

enerated images for enhancing the semantic consistency. How-

ver, the success of some existing methods [14–16] were limited to

imple scenarios, and had difficulty in presenting multiple objects

nd their relations when generating images from complex descrip-

ions. To address this issue, Hong et al. [19] and Li et al. [1] con-

truct the semantic layouts from text descriptions to guide the im-

ge generation, where a box generator first estimates the bounding

ox layout of an images, followed by a shape generator to refine

he pixel-level synthesis. 

.2. Unsupervised generation 

Unsupervised learning of generating a specific object given an

nput has been extensively studied in various tasks, such as ma-

hine translation [22–24] , image description generation [25,26] ,

nsupervised image-to-image translation [27,28] and person im-

ge generation [29] . Unsupervised machine translation approaches

22,23] generally build a common latent space between the two

anguages, and the sentences from two languages are semantically

ligned to perform translation. Su et al. [24] utilized images to as-

ist the unsupervised machine translation, based on the assump-

ion that the description of the same visual content by different

anguages should be approximately similar. Feng et al. [25] at-

empted to conduct unsupervised image captioning with the in-

erconnection of visual concepts, while Chen et al. [26] generates

tylish image description in an unsupervised manner by learning

 joint space for paired-unstylish captions and monolingual cor-

us of a specific style. Liu et al. [27] adopted coupled GANs for

nsupervised image-to-image translation, based on the assump-

ion that a pair of corresponding image from different domains

an be mapped to a same latent representation. Stacked Cycle-

onsistent Adversarial Networks (SCANs) [28] further refines the

ransferred images with multi-stage learning similar to [16,17] .

ong et al. [29] addressed the unsupervised pose-guided person

mage generation via exploiting the transformation between se-

antic parsing maps of different person images. 

While many unsupervised generation tasks have been explored

o alleviate the burden of labeling data, how to generate images

rom natural language descriptions in an unsupervised manner is

till left untouched. Compared with unsupervised image-to-image

27,29] and language-to-language generation [22–24] , unsupervised

ext-to-image synthesis is more challenging due to the difficulty

n generating visually-semantic images, as well as the significant

roperty differences between visual and textual modalities. 

. Background 

In this section, we briefly review the encoder-decoder-

iscriminator architecture for training the text-to-image synthesis

odel in a supervised manner. 

Encoder. As we aim to generate one natural image for one given

entence, we need to first encoder the sentence to generate its se-

antic representation, where one recurrent neural network (RNN),

pecifically long short-term memory (LSTM) or gated recurrent

nit (GRU), is naturally suitable for modeling sentence. Given one

nput sentence S = { w 1 , w 2 , · · · , w R } , we feed w r at time r into the

NN unit to generate the corresponding hidden state h r : 

 r = RNN (w r , h r−1 ) . (1)

he hidden state h R of last time step R encodes the whole in-

ormation of sentence, which can be thereby regarded to express

ts global semantic meaning. And the hidden state sequence h =
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Fig. 1. The framework of AttnGAN for the text-to-image synthesis task, where RNN encodes the sentence, { G 0 , G 1 , G 2 } and { D 0 , D 1 , D 2 } are the corresponding generators and 

discriminators at different stages, respectively. DAMSM is used to evaluate the fine-grained image-text matching relationships. 
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 h 1 , h 2 , · · · , h R } generated during the encoding process can also be

egarded to contain the fine-grained word-level semantic informa-

ion. 

Decoder. Conditioned on the semantic representation of the

iven sentence, the decoder aims to generate one image, which

s realized by stacking multiple generators. Taking AttnGAN [2] as

ne example, its framework is illustrated in Fig. 1 . Specifically,

hree generators { G 

0 , G 

1 , G 

2 } take the corresponding generated hid-

en states { x 0 , x 1 , x 2 } as input and decode images { ̂ I 0 , ̂  I 1 , I 2 } stage-

y-stage from low resolution to high resolution: 

 

0 = F 0 (z, f (h R )) , 

x t = F t (x t−1 , f t a (h , x t−1 ) , 

ˆ I t = G 

t (x t ) , (2) 

here z is one noise vector sampled from one standard normal

istribution. f ( h R ) performs the conditioning augmentation pro-

ess [16] , converting the global sentence representation to one

onditioning vector. f t a denotes the attention strategy performed at

 -th stage. F t and G 

t are the neural networks to generate the image
ˆ 
 

t at the t -th stage. Please refer to Xu et al. [2] for more detailed

nformation about AttnGAN. 

Discriminator. As the image are generated stage-by-stage, multi-

le discriminators, namely { D 

0 , D 

1 , D 

2 } are used at different stages

o discriminate the input image as real or not, as shown in Fig. 1 . 

The text-to-image synthesis model targets at not only synthe-

izing photo-realistic image but also expressing semantically con-

istent meaning with the input sentence. To this end, as stated

n [2] , each discriminator D 

t is trained to classify the input image

nto the class of real or fake by minimizing the cross-entropy loss

 

uncond [17] . For each generator, consisting of the encoder and de-

oder, besides the GAN loss yielded from the discriminator at t -th

tage, an additional fine-grained image-text matching loss, termed

s L DAMSM 

is computed to measure the image-text similarity at

ord level for training the generator. 

. Unsupervised text-to-image synthesis 

In this paper, we focus on training one text-to-image synthesis

odel in an unsupervised manner. As aforementioned, the most

ritical challenge is how to train one generative model and make it

ork without any manually labeled image-text pair data. In order

o tackle such a challenge, we propose to mine the visual concepts

ontained in the sentence corpus. Afterwards, the visual concepts

ct as one semantic bridge between images and one sentence to

onstruct one pseudo image-text pair. With such pseudo pairwise

ata, we can thereby initialize one text-to-image synthesis model

n a supervised training manner. Afterwards, the visual conception
istillation and the global semantic consistency measurement are

roposed to further tuning the text-to-image synthesis model. 

.1. Pseudo image-text pair generation 

In order to train one text-to-image synthesis model, we resort

o the visual concepts, which perform as one bridge to semanti-

ally align the unlabeled images and sentences and thereby pro-

uce pseudo image-text pair data. 

Formally, under the unsupervised setting, we have an image set

 = { I 0 , I 1 , . . . , I N−1 } and one sentence corpus S = { s 0 , s 1 , . . . , s M−1 } ,
s well as one image object detector. Please note that the im-

ges and sentences are not semantically aligned. First, we start

ining the visual concepts contained in each sentence and the

lass labels of the object detector, and thereby construct one vi-

ual concept dictionary C. In order to bridge the sentence and im-

ge, the concept dictionary C is constructed by K visual concepts

 c 0 , c 1 , · · · , c K−1 } . Meanwhile, we also have the concept-sentence

air data, which can be used to train a sequence-to-sequence

seq2seq) [30] model, as shown in Fig. 2 (a). Please note that the

rdering of the visual concepts is same as their ordering in the

entence. With such a seq2seq model, a set of individual visual

oncepts is transformed into a humanlike language description. 

Afterwards, we rely on the existing object detector [31] to ob-

ain the visual concepts contained in one given image. Please note

he detected visual concepts are ordered by their detection confi-

ence scores, which will be fed into the learnt seq2seq model and

hereby generate one natural sentence, as shown in Fig. 2 (b). The

enerated sentence ˆ s n and the given image I n thereby form one

seudo image-text pair data. 

.2. Visual concept discrimination 

With the obtained pseudo image-text pair data, we can train

enerative models following the traditional supervised text-to-

mage synthesis approaches, and readily adopt the network archi-

ectures and loss functions introduced in Section 3 to synthesize

isually realistic images. While unfortunately, the generated sen-

ence accompanied with the image may contain noisy visual con-

epts or miss the truly existing visual concepts, compared with

he groundtruth sentence, which could easily lead to misalign-

ent between image contents and textual information. As shown

n Fig. 3 , the generated sentence contains the noisy visual concept

television ” which does not appear in the real image, while

ailed to express the truly existed visual concept “boy ”. 

To address this issue, we propose one novel visual concept dis-

rimination loss: 

 

dis = L ( ̂ I t n , ̂  s n , Y n ) + L (I n , ̂  s n , Y n ) + L (I j , ̂  s n , Y j ) . (3)
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Fig. 2. The pseudo image-text pair generation pipeline. (a) We mine the visual concepts from one sentence corpus, based on which the concept-sentence pairs are collected 

to train a seq2seq model. (b) The learnt seq2seq model takes the concepts detected from one given image as the input and generates one sentence. The generated sentence 

and the given image are thereby form one pseudo image-text pair. 

Fig. 3. The proposed visual object discrimination loss, which encourages the generative model to produce images expressing the truly existed visual concepts, such as “boy ”, 

and also suppressing the noisy visual concepts, such as “television ”, existing the pseudo generated sentence. 
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Here the loss L ( ̂ I t n , ̂  s n , Y n ) is defined as: 

L ( ̂ I t n , ̂  s n , Y n ) = − 1 

K 

K ∑ 

k =1 

(
Y k n log (D c ( ̂ I T n , ̂  s n )) 

+(1 − Y k n ) log (1 − D c ( ̂ I T n , ̂  s n )) 
)
, (4)

where Y n and Y j denotes the concept labels of image I n and I j , re-

spectively, with each element Y k n ∈ { 0 , 1 } indicating the existence

of concept c k in the real image I n . D c ( ̂ I t n , ̂  s n ) is realized by K binary

classifiers to yield the corresponding visual concepts expressed by

the image-text pair ( ̂ I t n , ̂  s n ) . As such, for the generator, L ( ̂ I t n , ̂  s n , Y n )

encourages the generated image ˆ I t n at t -th stage together with the

obtained pseudo sentence contains the same visual concepts as the

real image I n . Meanwhile, the noisy visual concepts which do not

appear in the real image I n are simultaneously suppressed. 

For training the discriminator, besides the generated image I t n ,

we also consider the real image I n accompanied with the gener-

ated sentence ˆ s n and randomly sample another real image I j with

no semantic relationships with ˆ s n . As such, the visual concept dis-

crimination loss defined in Eq. (3) not only encourages the seman-

tically aligned image-text pairs, specifically, ( ̂ I t n , ̂  s n ) and (I n , ̂  s n ) , to

produce the correct concept labels, but also ensures the unrelated

pair (I j , ̂  s n ) to yield unreliable concept labels. In this paper, as the

visual concept label for each image is extremely sparse, therefore,

the two labels Y n and Y j seem not be able to overlap with each

other. As such, Y j is used and regarded as the unreliable concept
abel for the pair data (I j , ̂  s n ) , instead of manually creating the un-

eliable concept label. 

Discussion. One similar visual concept distillation loss is pro-

osed in [25] to encourage the generated caption containing the

isual concepts detected from the input image. The most difference

ies in that the visual concept distillation loss in [25] is only used

o training the generator, while our proposed visual concept dis-

rimination loss not only train the generator but also tune the dis-

riminator by sampling one semantically unrelated image-text pair

(I j , ̂  s n ) . Second, for the text-to-image synthesis task, we mainly fo-

uses on the presence of the visual object while neglect the corre-

ponding probability the object detected from the image. As such,

e resort to the K binary classifiers to determine whether the

mage-text pair expresses the concept labels without considering

he confidence score used in [25] . 

.3. Global semantic consistency with respect to real sentences 

Based on the constructed pseudo image-text pair and the pro-

osed visual concept discrimination loss, we have made it possi-

le to train a generative model for text-to-image synthesis with-

ut any labelled image-sentence pairs and improved the ability

f generator to express local visual concept information. However,

e notice that the generative model is trained with the generated

seudo image-text pair data, which inevitably has distribution de-

iation with the real sentences. As such, the global semantic con-

istency between generated images and real human language sen-

ence cannot be guaranteed. In this section, we incorporate the real
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entences to readjust the generative models to make it more suit-

ble for the text-to-image synthesis task. Specifically, we use the

atching-aware discrimination loss as [14] and formulate the ob-

ective function as: 

 

pair = −E ˆ I t m ∼p G t ,s m ∼p S 
[ log (D 

t ( ̂ I t m 

, s m 

))] 

−E I n ∼p I , ̂ s n ∼p ˆ S 
[ log (D 

t (I n , ̂  s n ))] 

−E ˆ I t m ∼p G t ,s m ∼p S 
[ log (1 − D 

t ( ̂ I t m 

, s m 

))] 

−E I n ∼p I ,s m ∼p S [ log (1 − D 

t (I n , s m 

))] (5) 

here the generator G 

t is encouraged to generate fake image ˆ I t m 

o match the real sentence s m 

, and the discriminator D 

t is learnt

o judge the fake pair ( ̂ I t m 

, s m 

) , the matched pair ( ̂ I n , ̂  s n ) , and the

ismatched pair ( ̂ I n , s m 

) as fake, real, and fake, respectively. 

By fine-tuning the generative model with the participation of

eal sentences in the matching-aware loss, the global consistency

etween the synthesized images and real sentences can be further

nhanced. More theoretically, the generator attempts to transform

n sentence sample from one distribution into an image follow-

ng the target distribution. The generated pseudo sentences can-

ot accurately approximate the distribution of real sentences and

ay lead to deviation when we attempt to generate images from

eal sentences. By incorporating L 

pair for fine-tuning the genera-

ive model enables the generator to learn more accurate informa-

ion from real language descriptions, which can further improve

he generation results. 

.4. Training 

In this paper, we target at training one text-to-image synthesis

odel without any manually labeled data. In previous sections, we

ntroduce how to construct the pseudo image-text pair to train one

enerative model. In order to ensure the image express the local

isual concept information, one visual concept discrimination loss

s introduced. For adapting to real sentence, one global semantic

onsistency loss is also proposed. In this section, we will provide

ne brief description of the training pipeline, with detailed infor-

ation of the initialization and training of each component. 

As illustrated in Algorithm 1 , training one text-to-image syn-

hesis model is performed in five steps. First, we need to construct
lgorithm 1 The whole pipline for training one text-to-image syn- 

hesis model in an unsupervised manner. 

nput: one image set I , one sentence set S , and one existing visual 

oncept detector. 

utput: one learnt text-to-image synthesis model. 

1: Construct the visual concept dictionary C by jointly considering 

the class labels of image detectors and the words existing in 

the sentences; 

2: Construct the pseudo image-text pair as illustrated in Sec. 4.1. 

3: Relying on C to contruct the concept-sentence pair data. 

4: Training one seq2seq model based on the concept-sentence 

pair data. 

5: Use the learnt seq2seq model to generate one pseudo sen- 

tence for each image based on its detected visual concepts. 

6: Train one deep attentional multimodal similarity model 

(DAMSM)~[2] based on the pseudo image-text pair. 

7: Train one generative model, specifically AttnGAN~[2], based on 

the pseudo image-text pair data and incorporating the pro- 

posed visual object discrimination loss in Sec. 4.2. 

8: Train the generative model, specifically AttnGAN, by taking the 

real sentence as input and further incorporating the global se- 

mantic consistency loss introduced Sec. 4.3. 

o  

a  

o

 

w  

l  

b  

m  

c  

L  

s  

5  

i  

g  

r  

e  

t  

i  

t  

l

 

e

 

 

ne visual concept dictionary C by jointly considering the class la-

els of the object detectors and the words containing in the sen-

ences. Such a constructed visual concept dictionary is also use-

ul for the following visual concept discrimination loss. Second, we

ely on the visual concepts as one bridge to generate one pseudo

entence for each image, thereby constructing pseudo image-text

airs. Detailed information can be referred to Section 4.1 . In order

o further training one generative model for text-to-image synthe-

is, we follow the same procedure in [2] to train one deep atten-

ional multimodal similarity model (DAMSM) based on the con-

tructed pseudo image-text pair. The DAMSM module stays fixed

uring the training of the text-to-image synthesize model. After-

ards, we train one generative model, specifically AttnGAN, based

n the pseudo image-text pair. Please note that the visual con-

ept discrimination loss as introduced in Section 4.2 is also used

or both training the generator and discriminator. Finally, the real

entence is taken as the input to finetune the pretrained AttnGAN

odel, which further considers the global semantic consistency

oss introduced in Section 4.3 . Specifically, the training losses for

he generator and discriminator are formulated as: 

L G = L 

uncond + L 

pair + λ1 L 

dis + λ2 L 

DAMSM , 

 D = L 

uncond + L 

pair + λ1 L 

dis , (6) 

here the unconditional adversarial loss L 

uncond and L 

DAMSM are

he same as Xu et al. [2] . Please note that L 

DAMSM is evaluated by

he DAMSM model trained on the pseudo image-text pair data. The

atching-aware discrimination loss L 

pair is defined in Eq. (3) , and

he visual concept discrimination loss L dis is defined in Eq. (5) . 

. Experiments 

.1. Datasets and settings 

Datasets. We conduct experiments on the MSCOCO [32] dataset,

hich is a large-scale dataset widely used for object detection, im-

ge captioning, and text-to-image synthesis. The MSCOCO dataset

ontains a training set of 82,783 images and a test set of 40,504

mages, with each image annotated with 5 sentences. For the unsu-

ervised setting, we split the original training set into 50,0 0 0 and

2,783 images, and take the 50,0 0 0 images (denoted as I) to train

ur model, and utilize the sentences from another 32,783 images

s external text corpus (denoted as S). The 40,504 images from the

riginal test set is used to evaluate the proposed approach. 

Implementation Details. Our model is implemented in PyTorch

ith a NVIDIA Tesla V100 GPU. For visual concepts mining, we uti-

ize the 480 object categories of the OpenImage dataset [33] to

uild the visual concept dictionary. For the concept-to-sentence

odel, we employ a seq2seq [30] model, where the concept en-

oder and sentence decoder are all realized with one single-layer

STM with the input size and hidden size setting as 512. For vi-

ual concept detection, we adopt Faster R-CNN [31] and select top

 detected concepts by the detection confidence score. For text-to-

mage generation, we rely on the architecture of AttnGAN [2] to

enerate images with resolution as 256 ×256. We set the hyperpa-

ameter as λ1 = 0 . 5 , λ2 = 50 , λ3 = 1 . The Adam [34] optimizer is

mployed for optimization with batch size of 32. The model is ini-

ialized by train 50 epochs with lr = 0 . 0 0 02 . Afterwards, by further

ncorporating the global semantic consistency loss with respect to

he real sentences, the model further fine-tuned with the same

earning rate for another 25 epochs. 

Evaluation Metrics. Two quantitative metrics are employed to

valuate the proposed method. 

• Inception Score (IS) [35] is a measurement of objectiveness

and diversity of the generated image, which is defined by the
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Fig. 4. Qualitative result comparisons of different text-to-image synthesis models. Please note that the StackGAN, HDGAN, and AttnGAN are all trained in one supervised 

manner, while ours is trained in an unsupervised manner. 



Y. Dong, Y. Zhang and L. Ma et al. / Pattern Recognition 110 (2021) 107573 7 

Fig. 5. The quantitative results of our approach with respect to different resolutions. 

Table 1 

Inception score of different methods on the COCO dataset. 

Note that our model is trained without any paired data, 

while others are trained with 40k annotated image-sentence 

pairs. 

Methods Resolution Inception Score 

GAN-INT-CLS [14] 64 × 64 7.88 ± 0.07 

SceneGraph [18] 64 × 64 6.70 ± 0.01 

StackGAN [16] 256 × 256 8.45 ± 0.03 

PPGN [37] 256 × 256 9.58 ± 0.21 

LayoutSynthesis [19] 128 × 128 11.46 ± 0.09 

HDGAN [38] 256 × 256 11.86 ± 0.18 

AttnGAN [2] 256 × 256 25.89 ± 0.47 

Ours(AttnGAN) 256 × 256 22.83 ± .44 
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Table 2 

Impact of different components in the proposed approach 

with AttGAN as the backbone network. 

Methods Inception Score R-precision 

Baseline 14.87 ± 0.32 27.00 ± 0.60 

Baseline + VCD 18.21 ± 0.19 28.96 ± 0.72 

Baseline + VCD+GSC 22.83 ± 0.44 32.87 ± 0.58 

Ours w/o init 18.19 ± 0.27 32.81 ± 0.89 
KullbackLeibler (KL) divergence between the conditional distri-

bution p ( y | x ) and marginal distribution p ( y ): 

IS(G ) = exp 

(
E x ∼p G D KL (p(y | x ) || p(y )) 

)
. (7)

Same as the existing text-to-image synthesis modes, we also

adopt inception-v3 [36] pre-trained on ImageNet to compute IS.
• R-precision [2] measures the semantic consistency between

generated images and input descriptions. R-precision indicates

the probability of an image to correctly retrieve the relevant

text from 100 candidates composed by 1 ground truth and 99

mismatched descriptions. Here we adopt the similarity model

provided in [2] to perform image-to-text retrieval. 

.2. Experimental results on MSCOCO 

Comparison with e xisting t ext-to- i mage s ynthesis m odels. Table 1

ompares the proposed unsupervised approach against 7 exist-

ng supervised method on the MSCOCO dataset. It can be ob-

erved that our proposed model, yielding an IS of 22.83, achieves

ignificantly better results than previous supervised methods of

16,19,38] . One reason for the superior performance can be at-

ributed that the network architecture of AttnGAN model. As il-

ustrated in Section 5.3 , our proposed visual concept discrimina-

ion loss and global semantic consistency loss also play impor-

ant roles for training the text-to-image synthesis model. Com-

ared with AttnGAN, with the same network architecture, our ap-

roach achieves slightly inferior results, (22.83 vs. 25.89). Please

ote that our approach is trained without any paired data, while

he other competitor models are trained with over 40 0,0 0 0 anno-

ated image-sentence pairs. Such significant achievements demon-

trate the effectiveness of our proposed strategy for unsupervised

ext-to-image synthesis. 
Moreover, Fig. 4 illustrates some qualitative results, which are

enerated by different text-to-image models. It can be observed

hat our approach can generate meaningful images even trained in

n unsupervised manner. For some cases, our approach can gen-

rate more visually pleasant images than StackGAN and HDGAN,

uch as the images shown the last two columns. 

Quantitative r esults on m ultiple r esolutions. We can also observe

hat approaches that can generate higher-resolution images usu-

lly perform better than algorithms limited to low-resolution im-

ges. Specifically, StackGAN [16] , HDGAN [38] , AttnGAN [2] , and

ur proposed method produces 256 × 256 images, achieving

uch higher inception score than GAN-INT-CLS [14] and Scene-

raph [18] which only generate 64 × 64 images. As such, we

xamine the ability of our approach on generating images with

ifferent resolutions. Specifically, three stages in AttnGAN trained

ith our proposed unsupervised strategy yields three different im-

ges with the resolutions as 64 × 64, 128 × 128, and 256 × 256.

e compare the IS of the images at different resolutions, which is

llustrated in Fig. 5 . It can be observed that the IS of 256 × 256

ignificantly outperforms those of 64 × 64 and 128 × 128. The

ain reason is that the visual conception discrimination loss L 

dis 

nd the DAMSM loss L 

DAMSM are only performed on the generated

56 × 256 image. Moreover, the mean IS values of 64 × 64 and

28 × 128 are 6.2 and 7.48, respectively, which are also compet-

tive with the existing models, namely GAN-INT-CLS, SceneGraph,

tackGAN, and PPGN. 

.3. Ablation studies 

In this section, we perform a series of ablation studies to eval-

ate the effectiveness of each component in our proposed frame-

ork, including the network initialization with pseudo caption, vi-

ual concept discrimination, and global semantic consistency refer-

ing to real sentences. 

Quantitative results. Table 2 reports the inception score and R-

recision of four training strategies: (i) ”Baseline” denotes training

n AttnGAN with pseudo image-caption pairs; (ii) ”Baseline + VCD”

enotes adding the visual concept discrimination loss on ”Base-
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Fig. 6. Comparison of qualitative results impacted by different components. 
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a  
line”, (iii) ”Baseline + VCD + GSC” denotes further fine-tuning the

model with real sentences based on ”Baseline + VCD”. (iv) ”Ours

w/o init” denotes directly training AttnGAN with real sentences as

described in Section 4.3 , without pre-training on pseudo image-

caption pairs. From the table we can see that training a AttnGAN
ith only pseudo image-caption pairs has outperformed many ex-

sting method by achieving an inception score of 14.87, which may

ue to two reasons: AttnGAN provides a strong baseline to gen-

rate high quality images, and the concept-to-sentence model is

ble to generate pseudo captions semantically aligned with real
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Table 3 

Impact of different components in the pro- 

posed approach with HDGAN as the back- 

bone network. 

Methods Inception Score 

Baseline 10.16 ± 0.12 

Baseline + VCD 11.23 ± 0.28 

Baseline + VCD+GSC 9.00 ± 0.21 

Ours w/o init 8.08 ± 0.15 
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mages. When we add the proposed visual concept discrimination

oss, the inception score can be improved to 18.21, and R-precision

s improved to 32.87, demonstrating that explicitly encouraging the

enerated images to express visual concepts could facilitates the

mage generation. It also shows that fine-tuning the network with

eal sentences can greatly enhance the global semantic consistency,

ith an improvement of 4.62 on inception score and 3.91 on R-

recision. Here we also report the results of training the model

rom scratch with real sentences, which only produces an incep-

ion score of 18.19. This underlines the importance of initializing

odel by training with pseudo-caption pairs. 

Moreover, in order to further demonstrate the effectiveness of

ur proposed components for unsupervised text-to-image synthe-

is, we retrain the unsupervised text-to-image generation with

DGAN as the backbone network, with the results listed in Table 3 .

t can be observed that, the Inception Score achieves 10.16 by train-

ng on the pseudo image-caption pairs. With further incorporating

he visual concept discrimination (VCD) loss the Inception Score

an be improved to 11.23, which shows that VCD can guide GAN

o generate images with more accurate visual concepts. However,

y further incorporating global semantic consistency (GSC), the In-

eption Score decreases by 2.23. Such a result is different from

hat of AttnGAN as the backbone network. The reason is mainly

ue to that GSC relies on DAMSM, which has not been consid-

red in HDGAN. However, training HDGAN with no pseudo image-

aption pairs for initialization, the Inception Score only achieves

.08, which validates the effectiveness of the proposed component

or constructing the pseudo image-caption pairs. 

Qualitative r esults. Fig. 6 illustrates qualitative comparison of

ifferent com ponents. We can see that images generated by ”Base-

ine” only contains rough shape and color but lacks the objects de- 

cribed in input sentences. Visual concept discrimination loss en-

bles the images to express more visual concepts such as ”cloths”,

trays” and ”boat”. Fine-tuning with real sentences produce im- 

ges that are more visually-realistic and show higher semantic rel-

vance with language descriptions. 

. Conclusion 

In this paper, we proposed to train one text-to-image synthesis

odel in an unsupervised manner, with no reliance on any pair-

ise image-text data. To the best of our knowledge, this is the

rst attempt to tackle such an unsupervised text-to-image syn-

hesis task. We rely on the visual concepts to bridge two sets of

mages and sentences, and thereby yield pseudo image-text pairs.

fterwards, one generative model is initialized on the constructed

seudo pair data by incorporating our proposed visual concept dis-

rimination loss. Finally, the global semantic consistency loss is fur-

her used to refine the pretrained generative model to adapt to the

eal sentence. Experimental results demonstrate that our proposed

nsupervised training method can yield promising results, which

ven outperforms some text-to-image models trained in the super-

ised manner. 
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