arXiv:2402.02338v2 [cs.NI] 5May 2024

NetLLM: Adapting Large Language Models for Networking

Duo Wu!, Xianda Wang!, Yaqi Qiao!, Zhi Wang?, Junchen Jiang®, Shuguang Cui!, Fangxin Wang!*
'The Chinese University of Hong Kong, Shenzhen, ?Tsinghua University, *The University of Chicago

ABSTRACT

Many networking tasks now employ deep learning (DL) to
solve complex prediction and system optimization problems.
However, current design philosophy of DL-based algorithms
entails intensive engineering overhead due to the manual
design of deep neural networks (DNNs) for different network-
ing tasks. Besides, DNNs tend to achieve poor generalization
performance on unseen data distributions/environments.

Motivated by the recent success of large language models
(LLMs), for the first time, this work studies the LLM adap-
tation for networking to explore a more sustainable design
philosophy. With the massive pre-trained knowledge and
powerful inference ability, LLM can serve as the founda-
tion model, and is expected to achieve “one model for all”
with even better performance and stronger generalization
for various tasks. In this paper, we present NetLLM, the first
LLM adaptation framework that efficiently adapts LLMs to
solve networking problems. NetLLM addresses many prac-
tical challenges in LLM adaptation, from how to process
task-specific information with LLMs, to how to improve the
efficiency of answer generation and acquiring domain knowl-
edge for networking. Across three networking-related use
cases - viewport prediction (VP), adaptive bitrate streaming
(ABR) and cluster job scheduling (CJS), we demonstrate the
effectiveness of NetLLM in LLM adaptation for networking,
and showcase that the adapted LLM significantly outper-
forms state-of-the-art algorithms.

KEYWORDS

Deep Learning, Network Optimization, Video Streaming, Job
Scheduling, Large Language Model Adaptation

1 INTRODUCTION
1.1 The Main Roadmap so far

Over the past decades, rule-based algorithms built on hand-
crafted control rules have played an important role in opti-
mizing network systems [5, 7, 28, 92]. For instance, Copa [5]
adjusts sending rates for congestion control based on mea-
sured queueing delay, while PANDA [44] switches video
streaming bitrates based on heuristically estimated band-
width. However, these algorithms heavily rely on rule engi-
neering, which involves intensive human efforts to devise,
implement and validate the control rules for network opti-
mization [9, 53, 54, 56].

“This paper has been accepted by ACM SIGCOMM 2024.

In recent years, the advancements of deep learning have
prompted extensive research into learning-based algorithms
for networking. These algorithms design and train deep neu-
ral networks (DNNs) with supervised learning (SL) [82] or
reinforcement learning (RL) [75] techniques to automatically
discover networking solutions, thus eliminating the need of
rule engineering. Specifically, SL is widely adopted to train
DNN:ss for prediction tasks in networking, such as traffic clas-
sification [45, 63] and bandwidth prediction [8, 55]. On the
flip side, RL is commonly employed to solve decision-making
problems in networking, including congestion control [1, 91],
adaptive bitrate streaming (ABR) [38, 53] and cloud cluster
job scheduling (CJS) [54, 66]. Thanks to the strong capa-
bility of DNNs in function approximation, learning-based
algorithms have demonstrated significant improvement over
handcrafted rule-based algorithms.

Despite their promising potential, existing learning-based
algorithms still suffer from two key limitations:

e High model engineering costs. The focus of learning-
based algorithms has shifted from rule engineering to
model engineering. Their success is heavily dependent on
the manual engineering of DNN models for specific net-
working tasks, which, however, can be labor-intensive due
to the complex structures of DNNs [56]. To make things
worse, the diversity of networking tasks also prevents shar-
ing the same DNN model across different tasks. This ne-
cessitates designing specialized DNNs for different tasks
(i.e., one model for one task), thus further increasing the
engineering costs.

o Low generalization. DNNs trained on specific data dis-
tributions/environments may struggle to perform well or
even worse than conventional rule-based algorithms on
unseen data distributions/environments [90]. For example,
an ABR model trained on smooth network conditions often
achieves poor performance on network environments with
dynamic bandwidth fluctuations [38]. The lack of general-
ization can ultimately hinder the widespread deployment
of learning-based algorithms in practice [88, 91].

1.2 New Opportunities and Challenges

Utilizing a single generic model for different tasks has been
recognized as a significant approach to mitigate the costs of
handcrafting specialized DNNs for each task and enhance
generalization [70]. This is exemplified by the recent pop-
ular large language models (LLMs) such as ChatGPT [62],
Flacon [65] and Llama2 [79] in the field of natural language
processing (NLP). With billions of parameters pre-trained

on massive data to absorb extensive knowledge, LLMs have
demonstrated extraordinary capacity in conversations, rea-
soning and text generation in NLP [83]. What’s more, their
knowledge in pattern mining, problem solving, and general-
ization to unseen conditions has proven to be transferable to
other domains [95], including robotics [21], protein structure
prediction [46] and chip design [50]. With these inspiring out-
comes, we believe LLMs can serve as the foundation models
for networking, as many networking tasks can also benefit
from their extensive knowledge. For instance, in the context
of ABR and congestion control, the pattern mining ability
of LLMs can be utilized to mine complex changing patterns
of bandwidth and delay for better decisions on bitrates and
sending rates. Moreover, their generalization capability can
be harnessed to generalize across diverse network environ-
ments. Therefore, we envision LLM as the key to achieve
one model for all tasks, with little handcraft costs and strong
generalization. We try to answer the following key question:
can we embrace the era of LLMs, and easily adapt LLMs to
solve various networking tasks efficiently and effectively?
Unfortunately, as revealed by our analysis in §3, the adap-
tation of LLM for networking faces the following challenges.

e Large input modality gap. In networking tasks, various
information observed from the system is collected as inputs
for networking algorithms (e.g., network throughputs and
playback buffer length for ABR algorithms [53]). However,
the modalities of these inputs differ significantly from plain
text, i.e., the native input modality supported by LLMs! [79,
93]. This discrepancy prevents LLMs to effectively process
the input information of networking tasks.

o Inefficiency of answer generation. LLM generates an-
swers using a language modeling (LM) head to predict
words (tokens) one by one (see Figure 1) [40]. While this
approach is well-suited in NLP, it presents several draw-
backs in the networking domain. First, LLM is prone to
hallucination due to the inherent uncertainty of token pre-
diction [35, 41]. Their generated answers for networking
tasks may seem correct but physically invalid (e.g., a nonex-
istent bitrate for video download in ABR), which can even-
tually impair the reliability of network systems. Second,
since tokens are predicted one at a time, LLM often requires
multiple inferences to generate a complete answer, thus
incurring high answer generation latency (i.e., the time to
generate a complete answer). Consequently, LLM may fail
to quickly generate answers to respond to the changes in
network systems (e.g., switching to a lower bitrate when
network bandwidth becomes scarce).

! Although multimodal LLMs have emerged recently (e.g., GPT4 [61]), their
supported input modalities are still limited (mainly vision or audio), hinder-
ing directly applying them to process networking task inputs.

e High adaptation costs. The large domain gap between
networking and NLP necessitates fine-tuning LLM to ac-
quire domain-specific knowledge for effective adaptation.
However, the adaptation costs can be prohibitively high, es-
pecially when fine-tuning LLM for decision-making tasks
(e.g., ABR [38] and CJS [54]) where RL is employed to solve
the system optimization problems. Specifically, RL-based
decision-making tasks require the active interaction be-
tween LLM and environments (e.g., network environments
with varying bandwidth or workload patterns) to collect ex-
periences for performance optimization [54, 88]. Due to the
large parameter size of LLM, the interaction process can be
excessively time-consuming, introducing a large amount
of additional training time. What’s worse, the adaptation
costs can further increase if fine-tuning the full parameters
of LLM, which is known to be resource-intensive [46, 50].

1.3 Design and Contributions

This work presents NetLLM, the first unified LLM adaptation
framework that efficiently adapts LLMs to solve networking
tasks. Specifically, NetLLM comprises the following three core
designs to overcome the aforementioned challenges:

e Multimodal encoder. NetLLM designs an efficient mul-
timodal encoder at the input side of LLM to effectively
process the multimodal input information of networking
tasks. At the core of this module, NetLLM uses modality-
specific feature encoders to extract features from raw in-
puts. It then leverages trainable linear layers to project
these features into token-like embedding vectors, which
can be directly fed into the LLM for effective processing.

o Networking head. To enable efficient answer generation,
NetLLM removes the default LM head used by LLM for
token prediction. Instead, it introduces various network-
ing heads at the output side of LLM to generate answers
for specific networking tasks. Each networking head is
essentially a lightweight trainable projector that maps the
output features of LLM directly into task-specific answers.
This enables LLM to generate a valid answer in a single
inference, thus ensuring the reliability of LLM for network-
ing and significantly reducing generation latency.

e Data-driven low-rank networking adaptation (DD-
LRNA). To reduce the adaptation costs, NetLLM designs a
DD-LRNA scheme for LLM to efficiently acquire domain
knowledge for networking. Specifically, DD-LRNA incor-
porates a data-driven adaptation pipeline to adapt LLM
for both prediction and decision-making tasks. In partic-
ular, for decision-making tasks, it employs the efficient
data-driven RL technique [3, 67, 91] to eliminate the time-
consuming interaction between LLM and environments.
It collects an experience pool as training dataset with ex-
isting methods and fine-tunes LLM over such dataset in
the data-driven manner. Besides, inspired by the advanced

parameter-efficient fine-tune technique [19, 26], DD-LRNA
introduces a set of additional trainable low-rank matri-
ces for LLM to learn networking knowledge. Since the
low-rank matrices only account for 0.31% of the total pa-
rameters, the fine-tune costs are greatly reduced, with the
reduction of 60.9% GPU memory and 15.1% training time.

NetLLM has some important properties: i) Compatibility:
it is independent of specific LLMs or networking tasks. That
said, different LLMs can be easily adapted with this unified
framework to solve a variety of networking tasks, by using
the multimodal encoders to process various task inputs, gen-
erating task-specific answers with networking heads, and
acquiring domain knowledge with the DD-LRNA scheme. ii)
Reliability: it addresses the hallucination issue and ensures
the LLM generated answers to be always valid. iii) Efficiency:
the DD-LRNA scheme significantly reduces the costs of fine-
tuning LLM to learn domain knowledge and the networking
heads also reduce the answer generation latency.

We have implemented NetLLM? for three networking tasks:
viewport prediction (VP) [72] for immersive video streaming,
adaptive bitrate streaming (ABR) [88], and cluster job sched-
uling (CJS) [54]. We believe these representative tasks cover
the main input modalities of networking problems and span
from prediction tasks to decision-making tasks (§3). Through
extensive trace-driven simulation and real-world tests, we
demonstrate the effectiveness of NetLLM in LLM adaptation
for networking. We showcase that across the three use cases,
LLM adapted by NetLLM significantly outperforms state of
the arts with performance improvements of 10.1-36.6% for
VP, 14.5-36.6% for ABR, 6.8-41.3% for CJS. Besides, our em-
pirical test results also show that we can efficiently utilize
the extensive knowledge of LLM with the proposed NetLLM
framework to achieve stronger generalization on unseen
testing environments.

The contributions of this paper are summarized as follows:

e We identify the key challenges of adapting LLMs for net-
working and demonstrate that some natural alternatives
fall short in addressing these challenges (§3).

e We then design NetLLM, the first unified LLM adaptation
framework for networking that incorporates a multimodal
encoder module to encode multimodal task inputs, net-
working head module to directly generate answers and a
DD-LRNA scheme to reduce the adaptation costs (§4).

o We extensively evaluate NetLLM across three networking
tasks. We showcase that LLM adapted by our framework
can significantly surpass state-of-the-art algorithms and
achieve superior generalization performance. We also pro-
vide in-depth understanding of NetLLM and shed light
on some practical concerns when using NetLLM to adapt
LLMs for networking (§5).

2The codes of NetLLM will be publicly available after acceptance.

N?/,ﬂ- ,,3{_1;" uk{\:’-- <E(TJS>

Language Modeling Head

LLM Output Features |:T‘:| E:j |:T‘:| E:j

Large Language Model (e.g., GPT-3, Llama2)

e Efﬂ o0 9 0 R e 5 Eb

Vocabulary

A

Token “the” earth “average” “radius” “is” 1 “6” | “371" | "km"

| | | [H A S R

TokeTnizer]

Answer: “6371 km”

Text “the earth average radius is”
Figure 1: Illustration of LLM answer generation mechanism.

2 BACKGROUND
2.1 Learning-Based Networking Algorithms

Learning-based algorithms design and train deep neural
networks (DNNs) to efficiently learn to solve networking
tasks [2, 55, 88]. In particular, there are two learning paradigms
commonly adopted to enable the learning process: super-
vised learning (SL) [82] and reinforcement learning (RL) [75].
SL is widely employed for prediction tasks in networking,
such as traffic classification [45, 63], bandwidth prediction [55,
90] and viewport prediction [30, 72]. It trains DNNs with
specific datasets to optimize a pre-defined loss function, so
that once trained, DNNs can be used for efficient prediction
to assist the system control. For example, Yan et al. [90] train
a DNN model over real-world bandwidth datasets to predict
the future bandwidth for bitrate control on video clients. On
the flip side, RL is well-suited for sequential decision-making
tasks in networking, including congestion control [1, 91],
video streaming [38, 53] and cluster job scheduling [54, 66].
In these tasks, DNNs actively interact with the environments
to collect experiences, then use them to optimize task-specific
reward functions so that the performance of network sys-
tems can be optimized. For instance, Mao et al. [54] employ
RL to train a DNN model to allocate resources to job requests
so as to maximize the utilization of computing resources in
a distributed computing cluster.

The major limitations of learning-based algorithms are
two-fold. First, they require manual design of specialized
DNN models for different networking tasks, thus entailing
high model engineering overhead [56]. Second, they are
prone to generalization issues, as DNNs may achieve poor
performance on unseen data distributions/environments [38].

2.2 Large Language Models

The advent of large language models (LLMs) such as Chat-
GPT [62], PaLM [14], Llama2 [79] and OPT [93] has pro-
foundly revolutionized the field of natural language process-

ing (NLP). These LLMs, pre-trained over large public corpora
(e.g., wikis and books) to acquire extensive knowledge, have

Table 1: Information of three learning-based algorithm use cases in the networking area.

Task DNN Input DNN Output Objective Learn.mg
Paradigm
Viewport time-series: historical viewports; f . minimize error between
o uture viewports .) SL
Prediction (VP) image: video content information predicted and actual viewports
Adaptive Bitrate time-series: hlstorl.cal thropghputs, d clay; bitrate selected for the maximize user’s Quality of
. sequence: chunk sizes at different bitrates; . . RL
Streaming (ABR) next video chunk Experience (QoE)
scalar: current buffer length
] . job stage to run next,
Cluster Job graph: DAGs describing dependency and number of executors minimize job completion time RL

Scheduling (CJS) resource demands of job execution stages

allocated to the stage

demonstrated remarkable capability across a wide range of
applications that largely affect our daily life, including dia-
logue systems [27], step-by-step reasoning [39], and even
code generation [12].

LLMs are essentially large DNNs built on top of Trans-
former [81], the de facto standard architecture for sequence
modeling in NLP tasks. They model the inputs and outputs
as sequences of tokens representing sub-words in NLP (e.g.,
aword “awesome” can be split into two tokens: “aw” and “es-
ome”). Specifically, they take as input a sequence of tokens,
and generate another sequence of tokens as answer with
the assistance of three key components: tokenizer, vocabu-
lary and language modeling (LM) head. Figure 1 illustrates
the answer generation mechanism of LLM. Given an input
sentence, the tokenizer splits it into a list of tokens. Then
the vocabulary is used to map each token into an embed-
ding vector that can be understood and effectively processed
by LLM. Afterwards, LLM encodes these token embeddings
into high-level features, which are subsequently passed to
the LM head to predict the probability distribution of next
token. Note that the output tokens are generated one by one
in the autoregressive manner [40, 52]. Both the sequence
of input tokens and previously generated tokens are repeat-
edly fed into the LLM to predict the next token, until an
end-of-sentence token (<EOS>) is emitted.

2.3 Domain-Adapted LLMs

The impressive performance of LLMs has sparked pioneering
research to adapt LLMs for other domains [21, 46, 50, 95].
For example, PaLM-E [21] adapts PaLM [14] to generate
step-by-step controlling commands for robotic manipula-
tion. ESMFFold [46] showcases the successful applications of
LLM in biological fields, which leverages LLM to accurately
predict atomic-level protein structure.

Inspired by these promising outcomes, this work explores
the adaptation of LLMs for networking to address the limita-
tions of existing learning-based algorithms, hoping to pave
the way for more sustainable design philosophy of network-
ing solutions. Unfortunately, although some prior studies

have showcased that LLMs are capable to generate some tech-
nical documents for networking (e.g., description documents
of digital twin for data centers [43]), none of the existing
works provide in-depth investigation on whether and how
LLMs can be adapted to solve networking tasks. Hence, this
work tries to bridge this research gap and proposes an LLM
adaptation framework for networking.

3 MOTIVATION

In this section, we identify the key challenges of LLM adap-
tation for networking, which motivate the design of NetLLM.
We use the following three tasks (summarized in Table 1) to
make our discussion concrete:

o Viewport prediction (VP) serves as a fundamental build-
ing block of the emerging streaming systems of immersive
videos (e.g., 360° videos [29] and volumetric videos [31]),
where only the video content within the viewer’s view-
port (the region visible to viewer) is streamed in high
quality to reduce the bandwidth consumption of video
transmission [29, 48]. To accomplish this, the VP model
predicts viewer’s future viewport positions based on histor-
ical viewports, and potentially incorporates video content
information (e.g., video frame) to enhance prediction per-
formance [72, 85]. The goal of VP is to minimize the error
between the predicted and viewer’s actual viewports.
Adaptive bitrate streaming (ABR) utilizes a RL model
to dynamically adjust chunk-level bitrates based on the
perceived network conditions and playback buffer length
during the streaming session of a video [38, 88]. The ob-
jective of ABR is to maximize user’s Quality of Experience
(QoE), which is quantified by factors such as chunk bitrate,
bitrate fluctuation, and rebuffering time.

Cluster job scheduling (C]JS) trains a RL scheduler to
schedule incoming jobs within the distributed computing
cluster [54, 66]. Each job is represented as a directed acyclic
graph (DAG), which describes the dependency of each
execution stage of the job and the resource demand of
each stage. The primary task of RL scheduler is to select
the next stage of a job to run and allocate a number of
executors (computing resources) to that particular stage.

g Baseline 100% 5

55 © 100{------ 334

8m9 _______ o3 o5

a9 > 253

<3 B v [T]

Ya) c 9 ot%

i o2 95 G2 Response
£5° 52 z Deadli
o5 o< <E, _2¢cadine
>|-|-| ey gﬂ—

< <

0 Token NetLLM
Prediction

0 Token NetLLM
Prediction

3 Prompt NetLLM
Learning

Figure 2: Illustration of the ineffectiveness for some natu-
ral alternatives with VP task as the example. Left: Prompt
learning [51, 57] that transforms data into textual prompts
achieves sub-optimal performance, while NetLLM with a mul-
timodal encoder to encode task input data effectively out-
performs baseline. Middle, Right: Token-based prediction
with LM head fails to guarantee valid answers and produce
stale responses, while NetLLM efficiently addresses these is-
sues with the networking head module.

The objective is to minimize the average job completion
time, so that the system-level utilization of computing
resources is optimized within the cluster.

Why these tasks? We choose these tasks for several reasons.

e First, they cover the two learning paradigms commonly
adopted in networking, i.e., SL for prediction tasks (VP)
and RL for decision-making tasks (ABR and CJS).

e Second, they include both centralized control (CJS) and
distributed control (ABR) networking tasks. Specifically,
the CJS scheduler is responsible for the entire cluster, while
the ABR client independently selects bitrates without con-
sidering other clients.

e Finally, they involve diverse input modalities, covering the
primary data modalities in many networking tasks. For
example, many continuous signals in network adaptation
problems (e.g., packet loss rate in congestion control [91])
are represented as scalar data, while graph representation
is widely used in other network system problems like hard-
ware device distributed placement [58].

In particular, we choose VP as it encompasses multiple in-
put modalities and requires cross-modality fusion, making
it more challenging for LLM adaptation than other predic-
tion tasks that generally involve single input modality (e.g.,
bandwidth prediction [55]). The characteristics of these tasks
ensure that our subsequent discussion is representative and
applicable to a wide range of networking scenarios.
Challenge 1: Large modality gap. As shown in Table 1,
different networking tasks have different input information
of diverse modalities, spanning from time-series network
throughputs to DAG data. However, most LLMs are designed
to accept plain text as inputs. Due to the substantial modality
gap, it is impractical to directly feed the input information
of networking tasks into LLMs for effective processing.
One seemingly natural approach to tackle this challenge is
prompt learning [51, 57, 69], which transforms data into texts
through a prompt template. Specifically, it designs a textual

I Parameter Update B Experience Collection

Standard RL
NetLLM 0.11h(0.37%)

0 20 40 60
Training Time on ABR (Hours)

Standard RL
NetLLM 1.08h(1.21%)

0 50 160 150
Training Time on CJS (Hours)

Figure 3: Using standard RL techniques [73, 80] to adapt LLM
for RL-based decision-making tasks (ABR and CJS) incurs
high training time due to the active environment interac-
tion for experience collection. NetLLM eliminates this time-
consuming process by designing an efficient data-driven
adaptation pipeline in the DD-LRNA scheme.

Q@ 100% — 65.88GB

55100 < @ 8

R 2260 g

= O =~

oY £0 Fwn

Ea &S o5

5@ =] co
50 £ T4

cE > 530 EL

op a @ ©

S o O c =

U (e}

o o

e 0.31%

Full
Fine-tune

NetLLM Full NetLLM
Fine-tune

Full NetLLM
Fine-tune

Figure 4: Illustration of the high adaptation costs of full-
parameter fine-tune [15, 79] on the VP task. The DD-LRNA
scheme of NetLLM efficiently reduces the costs by introducing
a set of small trainable low-rank matrices.

template that provides the information of task specifications,
and uses this template to transform task inputs into textual
prompts to instruct the LLM to generate desired answers
that solve the tasks. While this approach shows promise in
other fields, it falls short in the networking domain due to
the following reasons. First, it is not feasible to transform
data of complex modalities (e.g., image in VP and DAG in
CJS) into textual prompts. Second, even if certain data can
be converted into texts (e.g., time-series viewports in VP),
we empirically observe that such transformation can be sub-
optimal. To give a concrete example, we use this approach to
adapt Llamaz2-7B [79] for the VP task. We design a template
to encapsulate viewport data into prompts (we exclude video
content information since it cannot be incorporated into
prompts directly). Based on this prompt template, we instruct
Llama?2 to predict the future viewports in the next 1 second
based on the historical viewports in the last 1 second (detailed
setup of this measurement can be found in §A.1).

Figure 2 (left) reports the performance of prompt-learning-
adapted Llama2 in terms of mean absolute error (MAE).
Lower MAE means better prediction performance. As shown,
under the prompt learning framework, Llama2 achieves poor
performance with 11.1% higher MAE than the state-of-the-
art VP model TRACK [72]. This could be attributed to the
significant modality gap between text and time-series data, as
textual representation may not effectively express the char-
acteristics of time-series data. For instance, the time-varying
patterns are typically not found in natural text.

Challenge 2: Inefficiency of token-based answer gen-
eration. As introduced in §2.2, by default, LLM generates
answers with LM head by predicting next tokens in an au-
toregressive manner, which, however, exhibits two main
drawbacks in the networking area.

First, the uncertainty of token prediction increases the risk
of LLM-generated answers to be physically invalid, a phe-
nomenon known as hallucination [35, 41]. To quantify this
issue, we calculate the fraction of valid answers (see §A.1)
when adapting Llama2 for VP task based on token predic-
tion. Figure 2 (middle) shows that Llamaz2 fails to guarantee
the generated answers to be 100% valid when using token
prediction. This raises concerns regarding the reliability of
deploying LLMs for real-world network systems.

Second, due to the sub-word nature of tokens, a single
word may span multiple tokens. In consequence, LLMs often
require multiple inferences to generate a single answer, as
depicted in Figure 1. This can produce delayed or even stale
answers that fail to quickly adapt to the system changes.
For instance, we measure the average time for Llama2 to
generate a single answer for the VP task. Figure 2 (right)
shows that it takes up to 3.84s for per-answer generation,
which significantly exceeds the 1-second response deadline
required for predicting future viewports in the next second.

Note that the above problems are not unique to the net-
working area. Nevertheless, they reduce the efficiency of
LLMs in networking, since networking tasks often require
high reliability and quick responsiveness [9, 56].
Challenge 3: High adaptation costs. Many networking
tasks such as ABR [88] and CJS [66] employ RL to solve com-
plex system optimization problems, which involve active
interaction between the environments (e.g., network envi-
ronments with varying bandwidth or workload patterns) to
collect experiences for reward optimization. In this context,
simply fine-tuning LLMs for these tasks based on standard
RL techniques (e.g., PPO [73] and DQN [80]) will introduce
prohibitive adaptation costs due to the time-consuming pro-
cess of environment interaction. To be more specific, we
measure the amount of time of fine-tuning Llama2 over ABR
(CJS) task for 10000 (100) iterations with standard RL. Each
iteration involves interacting with the environment for one
episode® to collect experiences, followed by optimizing re-
wards based on these experiences. As depicted in Figure 3,
the experience collection caused by active environment inter-
action introduces additional 31.18h (56.42h), accounting for
52.27% (39.25%) of the total training time on ABR (CJS) task.
While this problem has been observed in prior works [53, 54],

3An episode in RL refers to a single round of a RL model to interact with
the environment from the initial state to final state. For example, in ABR
task, the RL model starts streaming the first video chunk (initial state) and
stops until all chunks are downloaded (final state).

it becomes intractable in the context of adapting LLMs for

networking given their large parameter sizes.

The adaptation costs become even more expensive when
fine-tuning the full parameters of LLMs [19, 26]. As shown
in Figure 4, fully fine-tuning Llama2-7B for the VP task con-
sumes 65.88GB GPU memory and 7.9h of training time. This
is because full-parameter fine-tune requires extensive mem-
ory and computation to store and maintain the training states
due to the large parameter size. In fact, another practical
drawback associated with full-parameter fine-tune is that
it may disrupt the pre-trained knowledge of LLM since it
updates all of its parameters. As a result, this may prevent a
single LLM to share across different networking tasks.
Summary. In a nutshell, we observe three challenges of LLM
adaptation for networking.

e The large modality gap makes the input information of
networking tasks incompatible with LLM, preventing the
LLM to effectively process task inputs.

e The default token-based answer generation of LLM ex-
hibits inefficiency in the networking domain, which re-
duces the reliability and responsiveness for LLM to serve
network systems.

o The large parameter size of LLM leads to significant costs
of adapting LLM to acquire domain-specific knowledge for
networking, especially for RL-based tasks which require
environment interaction.

4 NETLLM DESIGN

In this section, we elaborate the detailed design of NetLLM, an
innovative LLM adaptation framework for networking that
efficiently solves the aforementioned challenges. As shown
in Figure 5, NetLLM comprises three main building blocks:

e Multimodal encoder. NetLLM solves challenge 1 by de-
signing an encoder module to encode multimodal input
data of networking tasks into token-like embeddings, which
can be effectively processed by the LLM.

o Networking head. To address challenge 2, NetLLM re-
places the LM head for token prediction with different
networking heads, which enable direct generation of a
valid answer for specific tasks in a single inference.

e Data-driven low-rank networking adaptation (DD-
LRNA). To reduce the costs of adaptation, NetLLM develops
an efficient DD-LRNA scheme to solve challenge 3. It incor-
porates a data-driven pipeline to adapt LLM for both pre-
diction and decision-making tasks, and introduces different
low-rank matrices to learn domain-specific knowledge to
further minimize the adaptation costs.

Note that during fine-tune, the parameters of the LLM are
frozen to preserve pre-trained knowledge, while the multi-
modal encoder, networking heads, and low-rank matrices
are tunable to optimize performance for different tasks. The
details of each blocks are described as follows.

§4.3 Data-Driven Low-Rank
Networking Adaptation

§4.1 Multimodal
Encoder

Token-Like Embedding

P —

Image

i

Time-Series

. [[GNN) /C:\IVN\ [it \
* [[Lnear\ [Linear\ [Linear\

[h—

Graph

)

h Trainable
ﬁé Frozen

| | |
~ Viewport
G % | @ Prediction
|

§4.2 Networking Head

g
s |/ | |
gp | '| : Adaptive Bitrate
| — @)
b a) | | | Streaming
c
s |l | |
o ! | |
oo
+ SU | ’l | =77 Cluster Job
| | ||::> Scheduling
| |
_____] I

Figure 5: NetLLM consists of three core components: multimodal encoder to encode task inputs, networking head to generate
task-specific answers and data-driven low-rank networking adaptation to efficiently learn domain knowledge for networking,.
The framework is illustrated with three tasks: VP, ABR and CJS, but all ideas can be easily applied to other networking tasks.

Example of Viewport Prediction
Viewport | [Viewport
i Vp

[

[

[Linear PrOjECtIOn] fimg] [fon
[v v

Token-Like Embedding

'I:IIZII:II:II:II:II:IIZII:II:II:I

[Large Language Model]

Figure 6: Illustration of the multimodal encoder of NetLLM
to encode multimodal data.

4.1 Multimodal Encoder

The key to process task-specific information (e.g., network
throughputs) with LLM is to project the multimodal input
data into token space to enable efficient utilization by the
LLM. To achieve this, we design a multimodal encoder to
automatically learn such projection. Figure 6 illustrates the
architecture of this module, which incorporates two blocks.
Feature encoder. We first employ different feature encoders
to extract features from raw input data of various modali-
ties. A key design consideration here is the choice of feature
encoder for each modality. Instead of handcrafting feature
encoders from scratch, which entails high model engineering
costs, we reuse the existing well-designed encoders tailored
for specific modalities. For example, Decima [54] for CJS
task develops a graph neural network (GNN) [87] encoder
to extract features from DAG information, and Vision Trans-
former (ViT) [20] has been widely used to encode images
into hidden features. These designs are precious research out-
comes and prove effective in processing specific modalities.
Therefore, we cherish and efficiently utilize these designs

by integrating them into our multimodal encoder module to
encode task input data of diverse modalities.

Linear projection. The features extracted by encoders, how-
ever, may not align to the token space. For instance, features
extracted by ViT have a dimension of 768 [20], while Llama2
requires an input dimension of 4096 [79]. To address this
issue, we design a set of trainable linear layers to project the
features extracted by different encoders. These layers auto-
matically learn a highly efficient mapping from feature space
to token space, producing a set of token-like embeddings
that can be effectively utilized by the LLM. Additionally, we
further enhance the projection process by normalizing the
output embeddings with layer normalization [6] to ensure
training stability.

Example. Figure 6 illustrates the multimodal encoder with
VP task as a concrete example. The ViT and 1D convolu-
tion layer (1D-CNN) are first used to encode the image and
time-series viewport data, respectively. Next, the extracted
features are projected into token-like embeddings with sep-
arate linear projection layers. Finally, all embeddings are
normalized through layer normalization to ensure training
stability, and passed to the LLM for further processing. Fig-
ure 2 (left) also provides statistical results to confirm the
effectiveness of multimodal encoder to project task-specific
input data. As shown, empowered by this module, NetLLM
significantly outperforms prompt-learning based data pro-
cessing scheme [51], with the average reduction of 19.7%
MAE for the VP task.

4.2 Networking Head

With the multimodal encoder, the LLM is capable to extract
high-level features that encompass important task-specific
information from input data of various modalities. These fea-
tures are then fed into the networking head for direct answer
generation. Specifically, the networking head is designed as

Video chunks in
Different Bitrates

-
nlalaiegr download
[700 kbps

1?,, (Invalid) x

% 2850 kbps
/ Q\y

LM Head

le = = |

le = = |

le = = |

goa download
750 kbps

(Valid)

Large Language Model

4300 kbps
—/

|

ABR Head

Bitrate (kbps)

Figure 7: Comparison between LM head and networking head
with ABR task as an example. For illustration, we assume
that video chunks are encoded into three bitrate versions
{750, 2850, 4300} kbps.

a trainable linear layer to predict task-specific answers based
on LLM output features, which can be flexibly customized
according to specific networking task. With this head, all
answers generated by LLM are guaranteed to be valid, en-
suring the reliability of LLM for networking. Moreover, LLM
can generate one answer within a single round of inference,
thus significantly reducing the generation latency.

Example. Figure 7 compares the difference between LM
head for token prediction and networking head with ABR
task as the example. As depicted, the LM head generates
answers by predicting next tokens autoregressively, which
requires multiple rounds of inference and thus entails high
generation latency. Besides, due to the inherent uncertainty
of token-based prediction, the generated answers may be
invalid, such as a bitrate that does not exist. In contrast, the
networking head is specially designed to predict the probabil-
ity distribution of bitrates, enabling direct answer generation
within a single round of inference. Furthermore, since the
outputs of networking head are limited to the discrete set
of candidate bitrates, the generated answers are guaranteed
to be always valid. The superiority of networking head over
LM head is also illustrated in Figure 2 (middle, right), where
NetLLM uses it to ensure the validness of answers and quickly
produces answers before the response deadline for VP task.

4.3 Data-Driven Low-Rank Networking
Adaptation

In this part, we delve into the detailed design of the proposed
data-driven low-rank networking adaptation (DD-LRNA)
scheme to efficiently fine-tune LLM to acquire domain knowl-
edge. The DD-LRNA comprises the following two core de-
signs: i) a data-driven adaptation pipeline for both prediction
and decision-making networking tasks; ii) a low-rank adap-
tation approach to constrain the fine-tune process to a small
number of parameters for more efficient adaptation.

Data-Driven networking adaptation. In the case of predic-
tion networking tasks, it is straightforward to fine-tune the
LLM through the standard SL data-driven training pipeline.
Specifically, given a task-specific dataset Dg; = {X, Y} of

(Compute Loss Ly
| & Trainable

|

|

|

|

|

update
3 Frozen

Low-Rank
Matrices

Dataset

. input
Adaptation for
Prediction Tasks @ label y

Low-Rank
Matrices

Dataset

Existing Policy

Large Language Model

P E P generated |

S = action@ |

| !
Adaptation for g update

m——————

Decision-Making Tasks

Compute Loss L,

Figure 8: Illustration of the data-driven low-rank networking
adaptation scheme of NetLLM.

actiona

inputs x € X and labels y € Y, we leverage the multimodal
encoder to encode input data x, elicit prediction results §
from LLM with networking head, and compute loss for pa-
rameter update by:

Ly = Fu(y.9) (1)
where Fy; is the loss function which can be cross entropy
(CE) for classification tasks (e.g., traffic classification [63]) or
mean square error (MSE) for regression tasks (e.g., bandwidth
prediction [55] and VP [72]).

Nevertheless, when it comes to the decision-making tasks,
the traditional RL training pipeline becomes impractical due
to the time-consuming process of the interaction between
LLM and environments. To tackle this challenge, we design
our RL adaptation pipeline based on the efficient data-driven
RL techniques [67, 91], which tackle the same problem as tra-
ditional RL but without the need of environment interaction.
Specifically, we collect the experience dataset with any ex-
isting (non-LLM) policy, and exploit this dataset to fine-tune
LLM for reward optimization. Notably, unlike traditional RL
that requires periodic refreshing of the experience dataset
during training [73, 80], our approach allows the dataset
to be collected only once and used throughout the entire
training process. As a result, the costs of adapting LLM for
RL-based networking tasks can be significantly reduced (e.g.,
with 51.1%/37.7% reduction of training time for ABR/CJS task
under the same training iterations, as depicted in Figure 3).

The proposed RL adaptation pipeline is described as fol-
lows, which is built on top of the Transformer based data-
driven RL [11, 34] that caters to the sequence modeling na-
ture of Transformer. Given a RL-based networking task, we
first employ an existing policy (e.g, Decima [54] for CJS)
to collect an experience dataset which consists of experi-
ence trajectories: D,y = {11, --,7|p,}. Each trajectory
T = {rs,ss, at}tT:1 is composed of rewards r, states s and
actions a, where T denotes the episode length. For each
sample in a trajectory {r;,s;,a;} € 7, we substitute the
reward r; by return R, = Zl—T:t r; representing the cumu-
lative rewards expected to receive from state s;. Addition-
ally, considering that the state or action in some tasks may

be constituted by multiple pieces of information (e.g., the
state in ABR includes past network throughput and playback
buffer length), we further discretize each state and action:

st ={s}, -+ ,s"},a; = {a},---,a"}. This leads to the follow-
ing representation of trajectory:
t={Rus},- .8}y, Al)

Based on the above trajectory representation, we then
fine-tune the LLM to learn the distribution of returns. At
each training step, we randomly sample a sequence of data
from the dataset:

d={Rys}, -
where w is the context window to facilitate the learning
of return distribution. Next, we feed data d to the LLM to

generate actions {a}, - - - ,a"}!

, 4"} ;.1 Notably, we consider
return and each piece of state, action information as different
modalities, and process them separately. Finally, the loss for

updating parameters is calculated by:

1 w m . .
Li=—> > Fulal.a) @)

i=1 j=1

'>s?,a,!,"‘,alm}t 1€Drl (3)

i=t—w+

where F,; measures the difference between action a{ and the

generated action d{ , which can be CE for discrete actions or
MSE for continuous actions.

The underlying rationale of the above training procedure
is to train the LLM to model the distribution of returns con-
ditioned on specific states, so that once trained, it can be
used to generate a series of actions that achieve the desired
returns [11]. In particular, during the inference stage, we
specify a target return based on the desired performance
(e.g., maximum possible return to achieve excellent perfor-
mance) to trigger the LLM to generate answers.

Low-rank networking adaptation. With the data-driven
adaptation pipeline in place, the LLM can now be fine-tuned
for networking adaptation. Given the pre-trained parameters
of LLM denoted as @, the goal of fine-tune is to search for
the parameter update A® such that the resulting parameters
® = &y + AD are optimized for the specific networking task.
Nevertheless, due to the large parameter size of LLM, directly
fine-tuning the full parameters of LLM entails prohibitive
computation costs, as the dimension of learned parameters
|A®| is equal to || (e.g., |Po| = 540 billion for PaLM [14]).

To combat the above limitation, we freeze the parame-
ters of LLM and introduce additional low-rank matrices to
approximate the changes needed in the LLM parameters to
learn domain-specific knowledge. The underlying insight
is that the parameter changes during adaptation (i.e., A®)
reside on an intrinsic low rank [4, 32]. Therefore, for each
pre-trained matrix W, € ®, of dimension d X k, we hypothe-
size the existence of a low rank r < min{d, k} and construct

Adapted_LLM =
Adapt(LLM, Dataset, Numlters)

NetLLM Integration

SL codebase:
- Simulator
- Dataset

Performance =
NetLLM | Test(Adapted_LLM, EnvSettings, Numlters)

Adaptor

RL codebase:
- Simulator
- Policies

Dataset =
RL_Collect(Policies, EnvSettings, Numlters)

Figure 9: Components and interfaces needed to integrate
NetLLM with an existing SL/RL codebase for LLM adaptation.

two low-rank matrices A, B of dimension d X r,r X k to ap-
proximate the update of Wy, i.e., W = Wy + AW = W, + AB.
During adaptation, W, is frozen and all parameter update is
constrained on matrices A and B. As shown in Figure 4, this
significantly reduces the fine-tune costs with the reduction
of 60.9% GPU memory and 15.1% training time, since the low-
ranks only introduces 0.31% of trainable parameters. Another
benefit of this approach is that the pre-trained knowledge of
LLM is preserved as each Wy € @ is retained without any
update. Hence, the same LLM can serve as the foundation
model for different tasks, and train different copies of A, B
to acquire different domain knowledge.

Putting all together. The DD-LRNA scheme is briefly sum-
marized in Figure 8. As shown, we freeze the parameters of
LLM and allocate different trainable low-rank matrices for
each task. These matrices are then fine-tuned over a dataset
to acquire domain-specific knowledge. For decision-making
tasks, the dataset is collected by using existing policies to
interact with environments. At each fine-tune step, we sam-
ple a batch of data from the dataset, feed data to the LLM to
generate answers, compute loss according to equation (1) for
prediction tasks or equation (4) for decision-making tasks,
and update the low-rank matrices through gradient decent.

4.4 Implementation

NetLLM is fully implemented in Python and Bash, and can
be easily integrated into existing SL/RL codebases to adapt
LLM for networking tasks. As depicted in Figure 9, it inter-
acts with an existing codebase with three APIs. First, Adapt
triggers NetLLM to use the provided dataset to adapt the LLM
to learn domain-specific knowledge for the target task, and
returns the snapshot of the adapted LLM. Second, Test eval-
uates the performance of the adapted LLM on the testing
environments generated with the given simulation settings.
Finally, for RL-based tasks without an available dataset for
adaptation, NetLLM offers the RL_Collect to collect the expe-
rience dataset by using the given RL policies to interact with
the environments. Afterwards, the collected dataset can be
plugged to the Adapt API to adapt the LLM.

We have integrated NetLLM into three existing codebases
for VP [86], ABR [88], and C]JS [54], and implemented the
above APIs based on the functionalities provided in the code-
bases. More details of implementation are provided in §A.2.

VP (| Better) ABR (T Better) CJS (| Better)

©
o

20

-
o

o
o

o o =
o ® o

=
o

NN\

v
N
S

«
o
S
S

a

w
°

(o4
o
o
©
@
g

<

Avgerage MAE (Degrees)

o

N

o

R elocity TRACK et LM FIFO Fail pecimayerttM

(a) Average performance with different random seeds

CDF

BBA
—=- MPC
——- GENET 0.2
—— NetLLM

~ - Velocity
—=-- TRACK 0.2
— NetLLM

——- Decima
—— NetLLM

200 300

40 60 80 0 1 2 3 0 100
JCT (Seconds)

20
MAE (Degrees) QoE Scores

(b) CDF Performance

Figure 10: Comparing NetLLM-adapted Llama2 for VP, ABR,
and CJS, with baselines in testing environments generated
with the same settings as training environments.

5 EVALUATION

5.1 Setup

Simulation setup. By default, we utilize Llama2-7B [79] as
the foundation LLM. We then use NetLLM to adapt Llama2
for three networking tasks based on the existing simulation
codebases: VP [86], ABR [88], and CJS [54]. We generate
different simulation environments with real-world and syn-
thetic datasets for training and testing, following the settings
described in §A.4 and Table 2, 3, 4. These settings cover the
key factors that affect the model performance. For instance,
in ABR task, our environment settings consider the range and
changing frequency of bandwidth as well as video bitrates.

Baselines. We implement three state-of-the-art learning-
based algorithms for comparison: TRACK [72] for VP, GENET
[88] for ABR and Decima [54] for CJS. We choose these base-
lines because they have open source implementation. In
addition, we also compare with other rule-based (non-DNN)
algorithms for each task: linear regression (labeled “LR”) [68]

and velocity-based prediction (labeled “Velocity”) [22] for
VP, BBA [33] and MPC [92] for ABR, first-in-first-out (la-
beled “FIFO”) and fair scheduling (labeled “Fair”) [74] for CJS.
Appendix §A.3 provides the brief overviews of all baselines.
Metrics. For performance metrics, we consider mean abso-
lute error (MAE) for VP, Quality of Experience (QoE) scores
for ABR, job completion time (JCT) for CJS. Lower MAE,
higher QoFE and lower JCT indicate better performance. In
particular, following the same formula in GENET, QoE is
calculated as the weighted linear combination of bitrate, re-
buffering time and bitrate fluctuation.

Hardware settings. We conduct experiments on a Linux
server equipped with eight Intel(R) Xeon(R) Gold 5318Y
CPUs and two NVIDIA 40GB A100 GPUs.

10

Unseen Settingl Unseen Setting2 Unseen Setting3

IS
S
»
S
IS
S

w
S
w
S
w
S

MAE (Degrees)
N
S

MAE (Degrees)
N
S

MAE (Degrees)
~
S

o
o
—
o
-
S

)
PP r e

R elodity TRACK yetttM

a
a
HJ A A
. LB
LR (elodity TRACK yetttM

(a) VP (| Better)

]
e

R (elocity TRACK yetttM

%
I

BBA mPC GENETNetL\—M

Unseen Settingl Unseen Setting2 Unseen Setting3

~
A

i
1

BBA mpC GENETNetU—M

NN
[P
—{=
QoE Scores
[T
N

—
®

1
—

QoE Scores
-
©

IS
N

QoE Scores
[
o
T
>
s

i

BBA MPC GENET NetL_M
(b) ABR (T Better)

Unseen Settingl Unseen Setting2 Unseen Setting3

240 120 200

,_.
®
S
—
7]
S

=
~

0

CT (Seconds)
JCT (Seconds)
>
JCT (Seconds)
=
5
3

o
)

Jog

0
FIFO Fall pecimdyerttM

Sy

FIFO Fall pecimayerttM

(c) CJS (| Better)

ELER

FIFO fall pecimayetttM

60
o

Figure 11: Comparing the generalization performance of
NetLLM-adapted Llama2 for VP, ABR, and CJS, with baselines
in testing environments generated with settings different
from training environments. The shape of box shows the
distribution and the triangle in each box denotes average.

5.2 General Evaluation

In this part, we first compare NetLLM-adapted Llama2 with
other methods across three different tasks over the testing
environments with the same settings as training environ-
ments (see §A.4). In other words, for each task, we adapt
Llama2 and train learning-based algorithms over environ-
ment generated with the target setting, and test all methods
in the new environment from the same setting.

Figure 10 presents the performance of each method for
the corresponding tasks. As shown in Figure 10, NetLLM-
adapted Llama2 consistently outperforms other methods
across all cases. It surpasses all baselines by reducing 10.1-
36.6% of MAE for VP, improving 14.5-36.6% of QoE for ABR
and reducing 6.8-41.3% of JCT for CJS. Figure 10 also provides
more detailed results in the form of CDF for each task. It can
be seen that a large proportion of NetLLM-adapted Llama2
is concentrated in the range of lower MAE, higher QoE and
lower JCT. For instance, for CJS task, the 90th percentile
JCT of Llamaz2 is 97.3 seconds, while this value dramatically
increases to 109.3 seconds for Decima, 135.6 seconds for Fair
and 187.5 seconds for FIFO. The above outcomes highlight
the effectiveness of NetLLM in LLM adaption for networking.

f7. BBA === MPC BEE GENET WM NetlLLM

o
®

o
o

7/, 7z

Normalized Mean Values
o o
N >

Normalized Mean Values
°
IS

o
o

QoE 1

(a) ABR Unseen Setting 1

Bitrate T Rebuffering L Bitrate Variation 4 QoE T

0.8 f7. BBA === MPC BEE GENET WM NetlLLM

Bitrate T

(b) ABR Unseen Setting 2

Rebuffering | Bitrate Variation .

0.8 f7. BBA === MPC BEEN GENET WM NetlLLM

NANNNNN
Normalized Mean Values

QoE T

(c) ABR Unseen Setting 3

Bitrate T Rebuffering | Bitrate Variation .

Figure 12: Comparing NetLLM-adapted Llama2 with baselines for ABR by breaking down their performance on individual QoE
factors in different unseen environments. Results are normalized through min-max. Arrow T/ | means higher/lower is better.

It is worth noting that although the learning-based algo-
rithms yield improvement over traditional rule-based algo-
rithms as depicted in Figure 10, their performance gain relies
on engineering specialized DNN models for the target tasks.
In contrast, empowered by NetLLM, a single LLM (specifically,
Llama2 in this experiment) can serve as the foundation model
and share across various tasks, thus significantly reducing
the overhead of model engineering.

5.3 Generalization

Next, we evaluate the generalization performance of all meth-
ods for each task in testing environments generated with
various settings different from the training environments
(see §A.4). As depicted in Figure 11, NetLLM-adapted Llama2
consistently outperforms baselines in terms of average val-
ues and distributions across all cases. For instance, compared
to the learning-based algorithms, it reduces the MAE by 1.7-
16.4%, improves the QoE by 3.9-24.8% and reduces the JCT by
2.5-6.8% on average. This suggests that, enabled by NetLLM,
Llama2 demonstrates superior generalization performance.

From Figure 11, we also notice that learning-based algo-
rithms do not always outperform conventional rule-based
algorithms for the ABR task. Figure 12 breaks down the QoE
scores of all ABR methods for more detailed analysis. As
shown, GENET is surpassed by MPC with 5.2%/5.9% lower
average QoE on unseen setting 1/2. More specifically, on
unseen setting 1, where the streaming video is different from
training one, GENET fails to optimize video bitrates and thus
achieves worse performance than MPC. In contrast, NetLLM-
adapted Llama? strikes a good balance between the three
QoE factors and thus achieves the highest QoE scores on
all settings. These cases exemplify that conventional DNN
models may perform poorly in unseen environments. In com-
parison, by adapting LLM for networking with our NetLLM
framework, we can indeed efficiently utilize the extensive
knowledge of LLM to achieve stronger generalization.

Real-world tests. As a final test of generalization, we eval-
uate NetLLM-adapted Llama2 in a real-world client-server
ABR system under different network connections (see §A.5
for detailed setup). The results are reported in Figure 14. On
each network, the adapted Llama2 outperforms the base-
lines. This indicates that LLM adapted by NetLLM is able to
generalize to real-world scenarios.

11

7% no Pre-trained Knowledge s no Domain Knowledge

, "
1 E

ABR (1 Better) CJS (! Better)

Bl Full Knowledge

S o o
* @

Average QoE Scores
°
0

Average MAE (Degrees)

Average JCT (Secol

o
B

VP (| Better)

Figure 13: Exploring the importance of pre-trained and
learned domain-specific knowledge of LLM in networking

adaptation.

77 BBA === MPC B GENET mmm NetlLLM

7,

Broadband

Cecullar

Figure 14: Comparing NetLLM-adapted Llama2 with baselines
for ABR on real-world environments with different network
connections.

5.4 Deep Dive

Importance of pre-trained and domain knowledge. To
gain a deeper understanding of why LLM can be adapted
for networking, we investigate the importance of both the
pre-trained and learned domain knowledge of LLM in net-
working adaptation. We use Llama2-7B as the LLM for our ex-
ploration. First, we disable the pre-trained weights of Llama2
that represent its pre-trained knowledge, randomly initial-
ize its weights and train it from scratch for each task. As
depicted in Figure 13, the absence of pre-trained knowledge
leads to dramatic performance decrease across all tasks. This
indicates that the pre-trained knowledge indeed contains
valuable common knowledge that can be shared across dif-
ferent tasks, making it necessary for networking adaptation.
Next, we preserve the pre-trained knowledge of Llama2
but disable the low-rank matrices that represent the learned
domain-specific knowledge. As reported in Figure 13, the
absence of domain knowledge also results in performance
degradation on each task, which highlights the importance
of NetLLM to acquire domain knowledge.
Impacts of different types of LLMs. To validate whether
NetLLM is applicable to various LLMs, we employ it to adapt
three additional LLMs besides Llama2 for the VP and ABR
tasks: OPT [93], Mistral [36] and LLaVa [47]. The size of each
LLM is set to 7B for fair comparison. It is worth mentioning
that LLaVa is a multimodal LLM trained on the combination

VP (| Better) ABR (1 Better)

o

o
®

Average QoE Scores
< °
>

©
°

Average MAE (Degrees)
o
=

OPT Mistral LLaVa Llama2 TRACK

OPT Mistral LLaVa Llama2 GENET

Figure 15: Comparing the performance of different LLMs
adapted by NetLLM for VP and ABR, with state-of-the-art
learning-based algorithms.

ABR

4 3
YE 30je—t—e —o—" Ye 2
=3 s 8%
v@ 15 od o
[o<}
] 3
Sc o ‘/‘\’_’_—Q———‘ Sc 25
z £ 15 - Baseline: LR z 2 _so0 —e— Baseline: BBA
- —¥— Baseline: Velocity e —¥— Baseline: MPC
°9 3 —4— Baseline: TRACK °9 5 —4— Baseline: GENET
o <L
o~ W R
Q Qo

0358 138 278 7B 138
Parameter Sizes of LLM (Billion)

0358 138 278 7B 138
Parameter Sizes of LLM (Billion)

Figure 16: Exploring the impacts of LLM sizes in networking
adaptation, with OPT [93] as the foundation model.

of image and text corpora. We select LLaVa for our evalu-
ation to investigate whether the pre-trained knowledge of
multimodal fusion is applicable for networking.

As shown in Figure 15, all the adapted LLMs outperform
the state of the arts on both tasks, which confirms the com-
patibility of NetLLM. Interestingly, we observe that the mul-
timodal LLaVa performs worse than to single-modal Llama2.
This suggests that the knowledge acquired by LLaVa in mul-
timodal fusion during pre-training may not be directly bene-
ficial in the networking domain?.

Impacts of different sizes of LLMs. Next, we investigate
the impacts of LLM sizes in the adaptation performance. We
select OPT [93] as the foundational model for this investiga-
tion, which offers different versions with varying parameter
sizes. The results are presented in Figure 16. As shown, when
the parameter size exceeds 1B, the adapted OPT achieves su-
perior or comparable performance to the advanced learning-
based algorithms. However, for the ABR task, OPT-0.35B
performs significantly worse than all baselines, potentially
due to the limited common knowledge to generalize across
tasks. This suggests that, in practice, LLMs with parameter
sizes greater than 1B are suitable for networking adaptation,
while those smaller than 1B may not be the optimal choices
for adaptation.

Computation overhead. To measure the overhead of de-
ploying NetLLM-adapted LLM to solve networking tasks, we
profile the LLM answer generation process. Overall, loading
a 7B LLM like Llama2-7B requires 29 GB memory and takes
about 0.1s~0.3s to generate one answer. The computation
overhead can be reduced by utilizing the advanced model
compression techniques [17, 89] (discussed in §6), or em-
ploying smaller LLMs such as OPT-1.3B which also achieves
superior performance over baselines (see Figure 16). Specif-
ically, for OPT-1.3B, it only takes 7GB to load the model,

4We leave deeper investigation of the efficacy of multimodal LLMs in net-
working for future work.

12

which can be accommodated by a single commercial GPU
like NVIDIA 10GB 3080. Besides, it takes about 0.04s for
OPT-1.3B to generate one answer, which is acceptable for
many networking tasks.

6 DISCUSSION

Multimodal LLMs. Multimodality has been actively inves-
tigated in the current landscape of LLM research [25, 42, 61,
78]. NetLLM can certainly benefit from this line of research.
In fact, it already showcases its efficacy in adapting mul-
timodal LLMs for networking, as illustrated in Figure 15.
However, perhaps surprisingly, our preliminary findings in-
dicate that multimodal LLMs do not necessarily outperform
single-modal LLMs in the field of networking. This prob-
lem can be alleviated with the development of more generic
LLMs (e.g., supporting more modalities).

Evaluating on other tasks. One natural question is whether
NetLLM can be applied to other networking tasks beyond the
three use cases presented in this paper. Actually, NetLLM’s
design is independent on specific tasks, making it applica-
ble to diverse networking scenarios. Moreover, by careful
selection of three representative use cases (§3), we ensure
that the ideas of NetLLM can be easily applied to other net-
working tasks, such as bandwidth prediction [55], congestion
control [91] and datacenter traffic optimization [10]. In the
future, we aim to validate the effectiveness of NetLLM in
adapting LLMs to address more networking problems.
Reducing the overhead. Numerous research works in model
compression [17, 89] can be utilized to reduce the compu-
tation overhead of LLMs, including model pruning [49, 94],
quantization [76, 77] and knowledge distillation [59, 64]. For
example, OPTQ [24] uses quantization to decrease the bit-
width of OPT-1.3B from originally 16 bits to 4 bits with
negligible performance degradation while significantly re-
ducing the model size by 4X. These active line of works can
integrate into NetLLM to reduce the overhead of LLMs when
deploying them for networking in practice.

7 CONCLUDING REMARKS

In this paper, we for the first time explore the utilization
of LLMs as foundation models for networking to reduce
handcraft costs involved in algorithm design and achieve
strong generalization. To achieve this, we propose NetLLM,
the first framework that efficiently adapts LLMs for different
networking tasks. Across three use cases in networking, we
show that NetLLM enables the effective utilization of a single
LLM to achieve superior performance and generalization in
multiple networking tasks. While NetLLM by no means is
the final answer, we hope that it serves as a stepping stone
towards a more sustainable design philosophy for future
networking algorithms and demonstrates the potential of
adapting LLMs for networking.

Ethics: This work does not raise any ethical issues.

REFERENCES

[1] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao. 2020. Classic

[10

[11

[12

[13

=

—

—

—_

meets modern: A pragmatic learning-based congestion control for
the internet. In Proceedings of the 2020 ACM SIGCOMM Conference.
632-647.

Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. 2021. Wanna
make your tcp scheme great for cellular networks? Let machines do it
for you! IEEE Journal on Selected Areas in Communications 39, 1 (2021),
265-279.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. 2020.
An optimistic perspective on offline reinforcement learning. In Proceed-
ings of the 2020 International Conference on Machine Learning. PMLR,
104-114.

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. 2020. In-
trinsic dimensionality explains the effectiveness of language model
fine-tuning. arXiv preprint arXiv:2012.13255 (2020).

Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical delay-
based congestion control for the internet. In 2018 USENIX Symposium
on Networked Systems Design and Implementation (NSDI). USENIX
Association, 329-342.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer
Normalization. arXiv preprint arXiv:1607.06450 (2016).

Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang.
2015. Information-agnostic flow scheduling for commodity data cen-
ters. In 2015 USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 455-468.

Abdelhak Bentaleb, Christian Timmerer, Ali C. Begen, and Roger Zim-
mermann. 2019. bandwidth prediction in low-latency chunked stream-
ing. In Proceedings of the 2019 ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video. 7-13.

Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. Auto: Scaling
deep reinforcement learning for datacenter-scale automatic traffic
optimization. In Proceedings of the 2018 ACM SIGCOMM Conference.
191-205.

Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. Auto: Scaling
deep reinforcement learning for datacenter-scale automatic traffic
optimization. In Proceedings of the 2018 ACM SIGCOMM Conference.
191-205.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover,
Misha Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch.
2021. Decision transformer: Reinforcement learning via sequence
modeling. Advances in Neural Information Processing Systems 34 (2021),
15084-15097.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, An-
drew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Lan-
guage Models Trained on Code. arXiv preprint arXiv:2107.03374 (2021).

Tatsuhiro Chiba and Tamiya Onodera. 2016. Workload characteri-
zation and optimization of TPC-H queries on Apache Spark. In 2016
IEEE International Symposium on Performance Analysis of Systems and

13

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

Software (ISPASS). IEEE, 112-121.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi
Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du,
Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael
Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,
Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne
Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiri-
donov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2023. Palm: Scal-
ing language modeling with pathways. Journal of Machine Learning
Research 24, 240 (2023), 1-113.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay,
William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Sid-
dhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-
Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gau-
rav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. 2022. Scaling
instruction-finetuned language models. arXiv preprint arXiv:2210.11416
(2022).

Federal Communications Commission. 2016. Raw data -
measuring broadband america. (2016). https://www.fcc.
gov/reports-research/reports/measuring-broadband-america/
raw-data-measuring-broadband-america-2016

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. 2020. Model
compression and hardware acceleration for neural networks: A com-
prehensive survey. Proc. IEEE 108, 4 (2020), 485-532.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu,
Haitao Zheng, and Maosong Sun. 2022. OpenPrompt: An open-source
framework for prompt-learning. In Proceedings of the 2022 Annual
Meeting of the Association for Computational Linguistics: System Demon-
strations. 105-113.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang,
Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen,
et al. 2023. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence 5, 3 (2023), 220-235.
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. 2021. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2021).
Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha
Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan
Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet,
Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Haus-
man, Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and
Pete Florence. 2023. Palm-e: An embodied multimodal language model.
arXiv preprint arXiv:2303.03378 (2023).

Xianglong Feng, Zeyang Bao, and Sheng Wei. 2021. Liveobj: Object
semantics-based viewport prediction for live mobile virtual reality
streaming. IEEE Transactions on Visualization and Computer Graphics
27,5 (2021), 2736-2745.

https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016

[l

[

[V

—

—

—

[t

—

—_

=

=

=

—

[23] DASH Industry Form. 2016. Reference Client 2.4.0. (2016).

http://mediapm.edgesuite.net/dash/public/nightly/samples/
dash-if-reference-player/index.html.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022.
Optq: Accurate quantization for generative pre-trained transformers.
In Proceedings of the 2022 International Conference on Learning Repre-
sentations.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang,
Xu Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, et al. 2023. Mme: A
comprehensive evaluation benchmark for multimodal large language
models. arXiv preprint arXiv:2306.13394 (2023).

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing,
and Nigel Collier. 2023. On the effectiveness of parameter-efficient
fine-tuning. Proceedings of the 2023 AAAI Conference on Artificial
Intelligence, 12799-12807.

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad
Firoiu, Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin Chad-
wick, Phoebe Thacker, et al. 2022. Improving alignment of dialogue
agents via targeted human judgements. arXiv preprint arXiv:2209.14375
(2022).

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2014. Multi-resource packing for cluster
schedulers. In Proceedings of the 2014 ACM SIGCOMM Conference. 455-
466.

Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and
Junchen Jiang. 2019. Pano: Optimizing 360° video streaming with a
better understanding of quality perception. In Proceedings of the 2019
ACM SIGCOMM Conference. 394-407.

Quentin Guimard, Lucile Sassatelli, Francesco Marchetti, Federico
Becattini, Lorenzo Seidenari, and Alberto Del Bimbo. 2022. Deep
variational learning for multiple trajectory prediction of 360° head
movements. In Proceedings of the 2022 ACM Multimedia Systems Con-
ference. 12-26.

Bo Han, Yu Liu, and Feng Qian. 2020. Vivo: Visibility-aware mobile
volumetric video streaming. In Proceedings of the 2020 ACM Annual
International Conference on Mobile Computing and Networking. Article
11, 13 pages.

Edward]J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank
adaptation of large language models. arXiv preprint arXiv:2106.09685
(2021).

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell,
and Mark Watson. 2014. A buffer-based approach to rate adaptation:
Evidence from a large video streaming service. In Proceedings of the
2014 ACM SIGCOMM Conference. 187-198.

Michael Janner, Qiyang Li, and Sergey Levine. 2021. Offline reinforce-
ment learning as one big sequence modeling problem. Advances in
Neural Information Processing Systems 34 (2021), 1273-1286.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko
Ishii, Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of
hallucination in natural language generation. Comput. Surveys 55, 12,
Article 248 (2023), 38 pages.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna
Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825 (2023).

Yili Jin, Junhua Liu, Fangxin Wang, and Shuguang Cui. 2022. Where
are you looking? A large-scale dataset of head and gaze behavior for
360-degree videos and a pilot study. In Proceedings of the 2022 ACM
International Conference on Multimedia. 1025-1034.

[38] Nuowen Kan, Yuankun Jiang, Chenglin Li, Wenrui Dai, Junni Zou, and
Hongkai Xiong. 2022. Improving generalization for neural adaptive
video streaming via meta reinforcement learning. In Proceedings of the
2022 ACM International Conference on Multimedia. 3006-3016.

[39] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa. 2022. Large language models are zero-shot reasoners.
Advances in Neural Information Processing Systems 35 (2022), 22199—
22213.

[40] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient memory management for large language model serving
with pagedattention. In Proceedings of the 2023 ACM Symposium on
Operating Systems Principles. 611-626.

[41] Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong
Wen. 2023. Halueval: A large-scale hallucination evaluation benchmark
for large language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing. 6449-6464.

[42] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023. Blip-2:
Bootstrapping language-image pre-training with frozen image en-
coders and large language models. arXiv preprint arXiv:2301.12597
(2023).

[43] Minghao Li, Ruihang Wang, Xin Zhou, Zhaomeng Zhu, Yonggang
Wen, and Rui Tan. 2023. Chattwin: Toward automated digital twin
generation for data center via large language models. In Proceedings of
the 2023 ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation. 208-211.

[44] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C Begen,
and David Oran. 2014. Probe and adapt: Rate adaptation for http video
streaming at scale. IEEE Journal on Selected Areas in Communications
32,4 (2014), 719-733.

[45] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing
Yu. 2022. Et-bert: A contextualized datagram representation with pre-
training transformers for encrypted traffic classification. In Proceedings
of the 2022 ACM Web Conference. 633-642.

[46] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Went-
ing Lu, Nikita Smetanin, Robert Verkuil, Ori Kabeli, Yaniv Shmueli,
Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Salvatore
Candido, and Alexander Rives. 2023. Evolutionary-scale prediction
of atomic-level protein structure with a language model. Science 379,
6637 (2023), 1123-1130.

[47] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023.
Visual instruction tuning. arXiv preprint arXiv:2304.08485 (2023).

[48] Junhua Liu, Boxiang Zhu, Fangxin Wang, Yili Jin, Wenyi Zhang, Zihan
Xu, and Shuguang Cui. 2023. Cav3: Cache-assisted viewport adaptive
volumetric video streaming. In Proceedings of the 2023 IEEE Conference
Virtual Reality and 3D User Interfaces (VR). 173-183.

[49] Jing Liu, Bohan Zhuang, Zhuangwei Zhuang, Yong Guo, Junzhou
Huang, Jinhui Zhu, and Mingkui Tan. 2022. Discrimination-aware
network pruning for deep model compression. IEEE Transactions on
Pattern Analysis and Machine Intelligence 44, 8 (2022), 4035-4051.

[50] Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng,
Nathaniel Pinckney, Rongjian Liang, Jonah Alben, Himyanshu Anand,
Sanmitra Banerjee, Ismet Bayraktaroglu, Bonita Bhaskaran, Bryan
Catanzaro, Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang,
Parikshit Deshpande, Siddhanth Dhodhi, Sameer Halepete, Eric Hill,
Jiashang Hu, Sumit Jain, Brucek Khailany, George Kokai, Kishor Ku-
nal, Xiaowei Li, Charley Lind, Hao Liu, Stuart Oberman, Sujeet Omar,
Sreedhar Pratty, Jonathan Raiman, Ambar Sarkar, Zhengjiang Shao,
Hanfei Sun, Pratik P Suthar, Varun Tej, Walker Turner, Kaizhe Xu, and
Haoxing Ren. 2023. Chipnemo: Domain-adapted llms for chip design.
arXiv preprint arXiv:2311.00176 (2023).

http://mediapm.edgesuite.net/dash/public/nightly/samples/dash-if-reference-player/index.html.
http://mediapm.edgesuite.net/dash/public/nightly/samples/dash-if-reference-player/index.html.

=

=

—

=

[t i}

[l

=

[V

[51] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi,

and Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic
survey of prompting methods in natural language processing. Comput.
Surveys 55, 9 (2023), 1-35.

Yuhan Liu, Hanchen Li, Kuntai Du, Jiayi Yao, Yihua Cheng, Yuyang
Huang, Shan Lu, Michael Maire, Henry Hoffmann, Ari Holtzman,
Ganesh Ananthanarayanan, and Junchen Jiang. 2023. CacheGen: Fast
Context Loading for Language Model Applications. arXiv preprint
arXiv:2310.07240 (2023).

Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural
adaptive video streaming with pensieve. In Proceedings of the 2017
ACM SIGCOMM Conference. 197-210.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. 2019. Learning scheduling al-
gorithms for data processing clusters. In Proceedings of the 2019 ACM
SIGCOMM Conference. 270-288.

Lifan Mei, Runchen Hu, Houwei Cao, Yong Liu, Zifan Han, Feng Li,
and Jin Li. 2020. Realtime mobile bandwidth prediction using lstm
neural network and bayesian fusion. Computer Networks 182 (2020),
107515.

Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu, Hongzi Mao, and
Hongxin Hu. 2020. Interpreting deep learning-based networking sys-
tems. In Proceedings of the 2020 ACM SIGCOMM Conference. 154-171.
Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh,
Thien Huu Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heintz, and
Dan Roth. 2023. Recent advances in natural language processing via
large pre-trained language models: A survey. Comput. Surveys 56, 2
(2023), 1-40.

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus
Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy
Bengio, and Jeff Dean. 2017. Device placement optimization with rein-
forcement learning. In Proceedings of the 2017 International Conference
on Machine Learning. PMLR, 2430-2439.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro
Matsukawa, and Hassan Ghasemzadeh. 2020. Improved knowledge
distillation via teacher assistant. In Proceedings of the 2020 AAAI Con-
ference on Artificial Intelligence. 5191-5198.

Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi:
accurate record-and-replay for http. In 2015 USENIX Annual Technical
Conference (USENIX ATC). 417-429.

OpenAl. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

OpenAl 2024. Chatgpt. (2024). https://chat.openai.com/chat

Fannia Pacheco, Ernesto Exposito, Mathieu Gineste, Cedric Baudoin,
and Jose Aguilar. 2018. Towards the deployment of machine learning
solutions in network traffic classification: A systematic survey. IEEE
Communications Surveys & Tutorials 21, 2 (2018), 1988-2014.
Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. 2019. Relational
knowledge distillation. In Proceedings of the 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 3967-3976.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojo-
caru, Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam
Almazrouei, and Julien Launay. 2023. The refinedweb dataset for fal-
con 1lm: Outperforming curated corpora with web data, and web data
only. arXiv preprint arXiv:2306.01116 (2023).

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, Chen Meng, and
Wei Lin. 2021. DI2: A deep learning-driven scheduler for deep learning
clusters. IEEE Transactions on Parallel and Distributed Systems 32, 8
(2021), 1947-1960.

[67] Rafael Figueiredo Prudencio, Marcos R. O. A. Maximo, and Esther Luna

Colombini. 2023. A survey on offline reinforcement learning: Taxon-
omy, review, and open problems. IEEE Transactions on Neural Networks
and Learning Systems (2023), 1-21.

Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018.
Flare: Practical viewport-adaptive 360-degree video streaming for mo-
bile devices. In Proceedings of the 2018 ACM Annual International Con-
ference on Mobile Computing and Networking. 99-114.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020.
Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research 21, 1 (2020),
5485-5551.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo,
Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky,
Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce, Ali
Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell,
Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. 2022. A gener-
alist agent. arXiv preprint arXiv:2205.06175 (2022).

Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pal Halvorsen.
2013. Commute path bandwidth traces from 3G networks: analysis
and applications. In Proceedings of the 2013 ACM Multimedia Systems
Conference. 114-118.

Miguel Fabian Romero Rondén, Lucile Sassatelli, Ramén Aparicio-
Pardo, and Frédéric Precioso. 2022. Track: A new method from a re-
examination of deep architectures for head motion prediction in 360°
videos. IEEE Transactions on Pattern Analysis and Machine Intelligence
44,9 (2022), 5681-5699.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017).

Apache Spark. 2024. Job Scheduling - Spark 3.5.0 Documentation.
(2024). https://spark.apache.org/docs/latest/job-scheduling.html Ac-
cessed: 2024-01-08.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning:
An introduction. MIT press.

Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Wen Ji, Yaowei Wang,
and Wenwu Zhu. 2022. Mixed-precision neural network quantization
via learned layer-wise importance. In Proceedings of the 2022 European
Conference on Computer Vision. Springer Nature Switzerland, 259-275.

Chen Tang, Haoyu Zhai, Kai Ouyang, Zhi Wang, Yifei Zhu, and Wenwu
Zhu. 2022. Arbitrary bit-width network: A joint layer-wise quantiza-
tion and adaptive inference approach. In Proceedings of the 2022 ACM
International Conference on Multimedia. 2899-2908.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M
Dai, Anja Hauth, et al. 2023. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805 (2023).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,
Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xi-
ang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela

https://chat.openai.com/chat
https://spark.apache.org/docs/latest/job-scheduling.html

(80

(81

(82

(83

(84

(85

(86

(87

(89

[90

[91

[92

[93

[94

[t

—

—

—_

=

[’

]

—

—

—

[t

—

—

[t

[l

Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288
(2023).

Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings of the 2016
AAAI Conference on Artificial Intelligence, Vol. 30.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in Neural Information Processing
Systems 30 (2017).

Xiangwen Wang, Xianghong Lin, and Xiaochao Dang. 2020. Super-
vised learning in spiking neural networks: A review of algorithms and
evaluations. Neural Networks 125 (2020), 258-280.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu,
Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2022. Finetuned
language models are zero-shot learners. arXiv preprint arXiv:2109.01652
(2022).

Chenglei Wu, Zhihao Tan, Zhi Wang, and Shigiang Yang. 2017. A
dataset for exploring user behaviors in VR spherical video streaming.
In Proceedings of the 8th ACM on Multimedia Systems Conference. 193—
198.

Chenglei Wu, Ruixiao Zhang, Zhi Wang, and Lifeng Sun. 2020. A spher-
ical convolution approach for learning long term viewport prediction
in 360 immersive video. In Proceedings of the 2020 AAAI Conference on
Artificial Intelligence. 14003-14040.

Duo Wu, Panlong Wu, Miao Zhang, and Fangxin Wang. 2023. Mansy:
Generalizing neural adaptive immersive video streaming with ensem-
ble and representation learning. arXiv preprint arXiv:2311.06812 (2023).
Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. 2021. A Comprehensive Survey on Graph
Neural Networks. IEEE Transactions on Neural Networks and Learning
Systems 32, 1 (2021), 4-24.

Zhengxu Xia, Yajie Zhou, Francis Y Yan, and Junchen Jiang. 2022.
Genet: Automatic curriculum generation for learning adaptation in
networking. In Proceedings of the 2022 ACM SIGCOMM Conference.
397-413.

Canwen Xu and Julian McAuley. 2023. A survey on model compression
and acceleration for pretrained language models. In Proceedings of the
2023 AAAI Conference on Artificial Intelligence. 10566-10575.

Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James
Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning
in situ: A randomized experiment in video streaming. In 2020 USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
495-511.

Chen-Yu Yen, Soheil Abbasloo, and H Jonathan Chao. 2023. Computers
Can Learn from the Heuristic Designs and Master Internet Congestion
Control. In Proceedings of the 2023 ACM SIGCOMM Conference. 255-
274.

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A
control-theoretic approach for dynamic adaptive video streaming over
http. In Proceedings of the 2015 ACM SIGCOMM Conference. 325-338.
Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya
Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Vic-
toria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. 2022. Opt: Open pre-trained transformer language mod-
els. arXiv preprint arXiv:2205.01068 (2022).

Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen,
Mingyi Hong, Yanzhi Wang, and Sijia Liu. 2022. Advancing model
pruning via bi-level optimization. Advances in Neural Information
Processing Systems 35 (2022), 18309-18326.

16

[95] Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia,
Jialin Wu, Paul Wohlhart, Stefan Welker, Ayzaan Wahid, Quan Vuong,
Vincent Vanhoucke, Huong Tran, Radu Soricut, Anikait Singh, Jaspiar
Singh, Pierre Sermanet, Pannag R. Sanketi, Grecia Salazar, Michael S.
Ryoo, Krista Reymann, Kanishka Rao, Karl Pertsch, Igor Mordatch,
Henryk Michalewski, Yao Lu, Sergey Levine, Lisa Lee, Tsang-Wei Ed-
ward Lee, Isabel Leal, Yuheng Kuang, Dmitry Kalashnikov, Ryan Julian,
Nikhil J. Joshi, Alex Irpan, Brian Ichter, Jasmine Hsu, Alexander Her-
zog, Karol Hausman, Keerthana Gopalakrishnan, Chuyuan Fu, Pete
Florence, Chelsea Finn, Kumar Avinava Dubey, Danny Driess, Tianli
Ding, Krzysztof Marcin Choromanski, Xi Chen, Yevgen Chebotar, Jus-
tice Carbajal, Noah Brown, Anthony Brohan, Montserrat Gonzalez
Arenas, and Kehang Han. 2023. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. In Proceedings of the 2023
PMLR Conference on Robot Learning (CoRL). 2165-2183.

A APPENDICES

Appendices are supporting material that has not been peer-
reviewed.

A.1 Details of Figure 2

The details to produce the results of “Prompt Learning” and
“Token Prediction” in Figure 2 are illustrated in Figure 17 and
described as follows. We use prompt learning [51] to adapt
the Llama2-7B LLM for the VP task. Specifically, we design
a prompt template to encapsulate time-series viewports into
textual prompts, and instruct Llama2 [79] to generate an-
swers for the VP task based on token prediction. We conduct
our measurements on an existing immersive video viewport
dataset [37]. As a motivating example, we use Llamaz2 to pre-
dict future viewports in the next 1 second based on past view-
ports in the last 1 second. Following previous works [30, 72],
the viewport sampling rate is set to 5Hz, thus the future
viewports and historical viewports are both 5-sample long.
Note that Llama2 initially achieves poor performance with-
out any fine-tune. Hence, we further uses OpenPrompt [18],
an open-source prompt learning framework, to fine-tune
Llamaz2 for 100000 iterations over the viewport dataset.

Note that in Figure 2 (middle) , we calculate the fraction of
valid answers generated by token prediction. In our practical
implementation, we consider an answer as valid if we can
extract viewports from it following a series of pre-defined
string parsing operations. On the other hand, an invalid an-
swer is often the case where it contains invalid characters
(e.g., unexpected punctuation) or misses some values. While
designing complex rules to post-process answers can allevi-
ate issue of invalid answers, it introduces the overhead of
answer engineering [43].

A.2 Details of NetLLM Implementation

We have integrated NetLLM into three existing codebases
for VP [86], ABR [88], and CJS [54], and implemented the
APIs in Figure 9 based on the functionalities provided in the

codebases. Additional details of NetLLM implementation are
explained as follows.

For the multimodal encoder, we utilize ViT [20] to encode
images, and 1D-CNN [53] to encode time-series and sequence
data (e.g., historical throughputs and future chunk sizes at
different bitrates in ABR). We leverage fully connected layer
to extract features from scalar data (e.g., buffer occupancy
in ABR), and use GNN [54, 87] to process graph information
(e.g., DAGs in CJS).

The networking heads can be easily customized according
to the target networking tasks. Specifically, we design the
VP head to predict the viewport coordinates of roll, pitch,
and yaw values. The ABR head is designed to output the
probability distribution of candidate bitrates. As for CJS task,
we design two heads for action generation: one to determine
the next job stage to run and the other to decide the number
of executor resources allocated to that stage.

Regarding the DD-LRNA scheme, we configure the con-
text window for learning return distribution as w = 10, and
set the rank of low-rank matrices to be r = 128. While addi-
tional tuning of w, r may be beneficial, we empirically find
that NetLLM performs well across a wide range of hyperpa-
rameter values (generally, w > 10 and r > 32 will yield
good performance). Thus, we do not employ sophisticated
methods to tune these hyperparameters. We also keep them
fixed throughout the experiments in §5.

A.3 Overview of Baselines

In our evaluation, we compare the performance of the LLM
adapted by our NetLLM framework with three baselines for
each task, including state-of-the-art learning-based algo-
rithms and rule-based algorithms. The following provides
an overview of each baseline used in our evaluation.
Baselines for VP. We implement the following three base-
lines for performance comparison for the VP task: TRACK [72],
linear regression (labeled "LR") [68], and velocity-based pre-
diction (labeled "Velocity") [22]. TRACK [72] is a learning-
based algorithm that designs a DNN model based on Long
Short Term Memory (LSTM) architecture for VP. It considers
both viewer’s historical viewports and video saliency map
as inputs to achieve state-of-the-art performance, where
saliency map is an image that describes viewer’s potential
attention on the video content. LR [68] assumes the move-
ment of viewer’s viewports as a linear function related to
time, then uses linear regression to estimate such function
for predicting viewer’s viewports. Velocity [22] calculates
the moving speed of viewer’s historical viewports and uses
it to estimate the positions of viewer’s future viewports.
Baselines for ABR. As for ABR, the following baselines
are implemented for comparison: GENET [88], BBA [33] and

17

Yaw I

I N
A Timestep Roll Pitch
|
Vg’jxg Yool 6.7602 44046 150.33 |
MEEE) Y g 60234 87424 15176 |\ \yrappeqd
L 1)
T r T by
The past 5 viewports were: Template
prompt (67602.4.404615033) (/
(Text) (6.0234,8.7424,151.76)
What are the next 5 viewports?
| | |
[Llama2-7B (LLM) J & Tunable
I I
Answer | (5:3556,8.4978,151.91)
L.
(Text) (12.782,0.7158,123.76)
|____i____¢____i____l |P Post'
n Timestep Roll Pitch Yaw | Processing
"/’i’:;;f;fg I e 53556 84978 15191 |,/
3 5 5 I wae e e wee |
=) § - 12782 07158 123.76

|
S —— |

Figure 17: Illustration of using prompt learning [51] to adapt
the Llama2-7B LLM [79] for the VP task.

Table 2: Summary of setting information in VP simulation.
hw/pw is short for historical window/prediction window.

Setting Viewport Dataset Prediction Setup
default train Jin2022 hw =2s, pw = 4s
default test Fin2022 hw = 2s, pw = 4s
unseen setting1 Jin2022 hw = 4s, pw = 65
unseen setting2 Wu2017 hw = 2s, pw = 4s
unseen setting3 Wu2017 hw = 4s, pw = 6s

MPC [92]. GENET [88] is a RL-based streaming algorithm im-
proved over Pensieve [53]. It introduces a curriculum learn-
ing technique to facilitate the RL training process to improve
convergence performance. BBA [33] considers buffer occu-
pancy as a critical signal for bitrate control and designs an
algorithm to maintain the playback buffer occupancy at a
desired level. MPC [92] leverages both throughput estimates
and buffer occupancy to choose bitrates by optimizing a
given QoE metric over a future chunk horizon.

Baselines for CJS. The following three baselines are im-
plemented for the CJS task: Decima [54], first-in-first-out
scheduling (labeled "FIFO") [74] and fair scheduling (labeled
"Fair") [74]. Decima [54] is a RL model for job scheduling in
the distributed computing cluster, which develops a graph
neural network (GNN) to efficiently process DAG informa-
tion of job properties (e.g., resource demands and depen-
dency). Both FIFO and Fair are two common scheduling
algorithms used by data processing system Spark [74]. The
former schedules jobs in the order of their arrival and allo-
cates the requested amount of resources to each job, while
the latter schedules jobs in a “round robin” fashion to ensure
that each job receives a roughly equal share of the cluster
resources.

Table 3: Summary of setting information in ABR simulation.

Setting Video Dataset Bandwidth Traces
default train Envivio-Dash3 FCC
default test Envivio-Dash3 FCcC
unseen setting1 Envivio-Dash3 SynthTrace
unseen setting2 SynthVideo FCC
unseen setting3 SynthVideo SynthTrace

Table 4: Summary of setting information in CJS simulation.

setting Job Requests Executor
Resources(k)
default train 200 50
default test 200 50
unseen settingl 200 30
unseen setting3 450 50
unseen setting4 450 30

A.4 Details of Simulation Settings

We generate different simulation environments with real-
world and synthetic datasets for training and testing to com-
prehensively evaluate the performance of the LLM adapted

by NetLLM against baselines. The detailed simulation settings

for each task are explained as follows.

VP simulation. As shown in Table 2, by default, we train and

test each method on a large-scale viewport dataset Jin2022 [37]
which consists of 2700 viewport traces recorded by 100 view-
ers watching 27 60-second immersive videos. The historical

window (hw) and prediction window (pw) are set to be 2

seconds and 4 seconds, respectively, for the default training

and testing settings. When evaluating generalization per-
formance, we test each method on a new viewport dataset

(i.e., new data distributions) and/or with a new prediction

setup (i.e., increasing prediction difficulty). For instance, on

unseen setting2, we evaluate each method on the new Wu2017
dataset [84]. This dataset contains 9 videos with an average

length of 242 seconds watched by 48 viewers, producing

a total of 432 long viewport traces. As for unseen setting1,

we increase pw to increase the prediction difficulty for each

method. Following the setting in [68], we roughly set hw =~

pw / 2 across all settings. Changing the coefficient does not

qualitatively affect the results.

ABR simulation. Table 3 summarizes the simulation set-
tings for ABR. By default, we train and test all methods to

stream the Envivio-Dash3 video from the DASH-246 JavaScript
reference client [23], whose format follows the GENET [838]

18

and Pensieve [53] setting. We use the broadband FCC [16]
traces as the default bandwidth dataset, which contains more
than 90 hours of bandwidth traces. To simulate environ-
ments for generalization testing, we follow the method in
Pensieve [53] to generate a synthetic video SynthVideo which
shares a similar format of Envivio-Dash3 but with a larger
video bitrate. Besides, we also generate a new bandwidth
dataset SynthTrace according to the method in Pensieve [53],
which exhibits a larger bandwidth range and more dynamic
fluctuation patterns than FCC.

CJS simulation. Table 4 provides the detailed information
of the CJS simulation. Following Decima [54], we simulate
different workload traces using a real-world dataset TPC-
H [13] which contains job requests of large data volumes,
high executor demands, and high degree of complexity. Ac-
cording to the repository of Decima [54], we set the number
of job requests to be 200 and the number of executor re-
sources (representing computation resources) to be 50k units
as the default training and testing settings. To evaluate the
generalization performance of each method, we simulate var-
ious unseen harder workloads by increasing the number of
job requests and reducing the number of executor resources,
as also done in Decima [54].

Note. It is worth noting that while the default training and
testing environments share the same setting, no testing sam-
ples are directly exposed in the training environment. For
instance, in ABR task, we split the bandwidth dataset into
training and testing sets so that the testing bandwidth traces
are different from the training ones.

A.5 Real-world ABR Testbed Setup

We leverage the testbed from GENET [88] to test the NetLLM-
adapted Llamaz2 in real-world client-server ABR system. The
testbed modifies dash.js (version 2.4) to support BBA, MPC
and GENET streaming algorithms. We further modify the
dash.js to support the adapted Llama2. In our real-world
tests, the client video player is a Google Chrome browser
(version 87) and the video server (Apache version 2.7) runs
on the same machine as the client. All tests are performed
on our Linux server, with two different ports to emulate the
ABR client and video server. We then use Mahimahi [60] to
emulate different network environments from the broadband
traces [16] and cellular mobile traces [71], along with an
80ms RTT, between the client and server.

	Abstract
	1 Introduction
	1.1 The Main Roadmap so far
	1.2 New Opportunities and Challenges
	1.3 Design and Contributions

	2 Background
	2.1 Learning-Based Networking Algorithms
	2.2 Large Language Models
	2.3 Domain-Adapted LLMs

	3 Motivation
	4 NetLLM Design
	4.1 Multimodal Encoder
	4.2 Networking Head
	4.3 Data-Driven Low-Rank Networking Adaptation
	4.4 Implementation

	5 Evaluation
	5.1 Setup
	5.2 General Evaluation
	5.3 Generalization
	5.4 Deep Dive

	6 Discussion
	7 Concluding Remarks
	References
	A Appendices
	A.1 Details of Figure 2
	A.2 Details of NetLLM Implementation
	A.3 Overview of Baselines
	A.4 Details of Simulation Settings
	A.5 Real-world ABR Testbed Setup

