
1

Towards Real-Time Video Caching at Edge
Servers: A Cost-Aware Deep Q-Learning Solution

Laizhong Cui, Erchao Ni, Yipeng Zhou, Zhi Wang, Lei Zhang, Jiangchuan Liu, Yuedong Xu

Abstract—Given the rapid growth of user-generated videos,
internet traffic has been heavily dominated by online video
streaming. Caching videos on edge servers in close proximity
to users has been an effective approach to reduce the backbone
traffic and the request response time, as well as to improve the
video quality on the user side. Video popularity, however, can be
highly dynamic over time. The cost of cache replacement at edge
servers, particularly that related to service interruption during
replacement, is not yet well understood. This paper presents
a novel lightweight video caching algorithm for edge servers,
seeking to optimize the hit rate with real-time decisions and
minimized cost. Inspired by recent advances in deep Q-learning,
our DQN-based online video caching (DQN-OVC) makes effec-
tive use of the rich and readily available information from users
and networks. We decompose the Q-value function as a product
of the video value function and the action function, which
significantly reduces the state space. We instantiate the action
function for cost-aware caching decisions with low complexity
so that the cached videos can be updated continuously and
instantly with dynamic video popularity. We used video traces
from Tencent, one of the largest online video providers in China,
to evaluate the performance of our DQN-OVC and to compare
it with state-of-the-art solutions. The results demonstrate that
DQN-OVC significantly outperforms the baseline algorithms in
the edge caching context.

Index Terms—Reinforcement Learning, Deep Q-Learning,
Edge Cache, Video Popularity

I. INTRODUCTION

With the advances in broadband networking, video coding,
and mobile computing in the past two decades, videos
can now be generated and consumed by any person any-
time and anywhere. Video applications, such as Netflix and
YouTube [1], have become essential internet services, and
streaming video has long been dominating traffic, accounting
for 70% of internet traffic [2]. It is envisioned by the Cisco
Visual Networking Index that global mobile video services
will grow nine-fold from 2017 to 2022, accounting for 79%
of total mobile data traffic by the end of the forecast period
[3].

Laizhong Cui, Erchao Ni and Lei Zhang are with the College of Com-
puter Science and Software Engineering, Shenzhen University, Shenzhen,
PR. China and with the Guangdong Laboratory of Artificial-Intelligence
and Cyber-Economics(SZ), Shenzhen University. (Email: cuilz@szu.edu.cn;
nierchao5@qq.com; leizhang@szu.edu.cn)
Yipeng Zhou is with the Department of Computing, Faculty of Science and
Engineering, Macquarie University, Sydney, NSW 2109, Australia, and also
with Peng Cheng Laboratory, Shenzhen, Guangdong 518000, China. (Email:
yipeng.zhou@mq.edu.au).
Zhi Wang is with Tsinghua Shenzhen International Graduate School. (Email:
wangzhi@sz.tsinghua.edu.cn)
Jiangchuan Liu is with the School of Computing Science, Simon Fraser
University, Burnaby, BC V5A 1S6, Canada (Email: jcliu@cs.sfu.ca)
Yuedong Xu is with the Department of Electronic Engineering, Fudan
University, Shanghai, China (Email: ydxu@fudan.edu.cn)
Corresponding author: Yipeng Zhou.

Given the massive amount of traffic generated by video
streaming applications, it is challenging to meet the stringent
quality of service (QoS) requirement of streaming videos
through remote cloud servers [4], [5]. An emerging trend is
to deploy edge servers in close proximity to streaming users
to shorten the transmission latency and reduce the backbone
traffic load [6]–[8]. A typical edge-empowered streaming sys-
tem consists of three entities: the cloud, edge servers, and end
users. A cloud server or cluster of servers stores all the videos
in a remote datacenter and can respond to requests from
users and edge servers. An edge server provides streaming
service to a limited number of nearby users with its cached
videos that are fetched from the cloud. The cache space of
an edge server, however, is very limited compared to that
of the cloud [7], which is virtually unlimited. Therefore, the
performance of an edge server is usually gauged by the cache
hit rate, that is, the rate of the requests served by the edge
server to the total requests from users associated with this
edge server.

Two challenges stand in the way of optimizing the hit
rate on edge servers, which have not been well studied in
the literature. On the one hand, video popularity is highly
volatile, particularly for today’s short videos that are likely
to be popular for only a few hours. An edge server needs
to replace stale videos in time to capture the latest trend
[9]. On the other hand, downloading a new video that is
not in the edge cache requires time [9], [10], during which
the service of the superseded video is not available. In other
words, replacing a stale video is not cost free.

This paper presents an in-depth and systematic study on
the video caching problem with edge servers, seeking to
address the aforementioned challenges. We demonstrate that
it can be modeled as a decision-making problem within
a reinforcement learning framework, in which caching a
video can be regarded as an action and maximizing the
hit rate is equivalent to maximizing the reward over time.
We then present a lightweight solution that is inspired by
recent advances in deep Q-learning [11]. Our online video
caching solution, namely, DQN-OVC, considers the unique
characteristics of online videos to effectively reduce the
computational complexity of deep Q-learning while retaining
high prediction accuracy. We decompose the basic Q-value
function into a video value function and an action function.
Instead of learning the Q-value function for each pair of
states and actions, we employ a small neural network to

2

learn the value of individual videos.1 This is an essential
simplification so that DQN-OVC can be executed in real
time to update the cached videos in a timely manner. Our
DQN-OVC also accounts for the replacement cost, which was
largely neglected in early studies. Specifically, when making
a decision to replace stale videos, the edge server considers
both a) the time cost to download new videos and b) the
interruption cost to interrupt the requests for stale videos.

The main contributions of this paper can be summarized
as follows:
• We model the video caching problem on edge servers

and design a novel lightweight solution inspired by
advanced deep Q-learning;

• Our solution, DQN-OVC, achieves low complexity and
seamlessly integrates the time cost to download new
videos from the remote cloud and the interruption cost
into the overall replacement cost.

We carried out extensive experiments using both the re-
quest records collected from Tencent, one of the largest
video service providers in China and a synthetic dataset. The
results demonstrate that DQN-OVC achieves a superior hit
rate compared to state-of-the-art solutions.

The rest of the paper is organized as follows. Sec. II dis-
cusses the related caching algorithms. Sec. III introduces the
background of the video caching system with an edge server
and formally formulates our problem. Sec. IV elaborates
the key designs in DQN-OVC, the improved cache decision
algorithm inspired by deep Q-learning. Sec. V introduces
the experimental settings and presents the results of our
experiments. Finally, Sec. VI summarizes this paper and
discusses our future works.

II. RELATED WORK

In this section, we introduce related works from three
perspectives: traditional heuristic caching algorithms, ma-
chine learning-based caching algorithms, and caching on
edge servers.

A. Traditional Caching Algorithms

The LRU (least recently used) and LFU (least frequently
used) are two classic algorithms in the literature [9], [12].
Their implementations are simple yet effective, and hence,
they are still widely used in modern caching systems, includ-
ing those for videos [13]. To accommodate the unique video
access patterns, Zhou et al. [14] proposed a new reactive
caching strategy, which mixed LFU and FIFO and updated
new content and old content in different ways. There have
also been recent works to accommodate varying object size
distributions and request characteristics [15] and to increase
the hit rate by maximizing the hit density [16].

B. Machine Learning-based Caching Algorithms

Due to the latest advances in artificial intelligence, var-
ious machine learning-based caching algorithms have been

1 Note that the structure of the neural network is identical for all videos.

developed for online video systems in recent years [17],
[18]. It is known that the caching problem can be turned
into a popularity prediction problem and then solved through
supervised learning. Narayanan et al. [19] applied a recurrent
neural network (LSTM) to predict the number of video
requests in a historic time period. Song et al. [20] further
demonstrated a cache policy based on the Belady MIN
algorithm for content distribution.

Recently, the reinforcement learning (RL) framework has
been suggested for making cache decisions. RL learns the
reward of each action so that the action can achieve the
highest rewards. Sung et al. [21] exploited the reinforcement
learning framework to determine the edge caching for wire-
less base stations. They further extended the decision space
of their algorithm to be applicable to multiple wireless edge
base stations and studied the edge base stations with a small
graph structure. Zhong et al. [22] applied DRL to obtain the
cache strategy based on historical video request time points
and new video request time points in the future. Compared to
supervised learning, DRL is more flexible in accommodating
multiple influential factors. Its action space, however, can be
exponential with the video population, incurring significant
computational overhead.

C. Caching on Edge Servers

It has been shown that active caching on edge devices can
save up to 22 % of the backhaul traffic [23] and significantly
reduce transmission latency [24]. Most recent edge caching
algorithms for videos have employed machine learning to
predict the videos’ future popularity [24]–[26]. The limited
storage and computing capacity of edge servers and the
high demand of advanced learning models, however, can
conflict. It is also worth noting that today’s machine learning
remains unreliable and unstable in terms of the prediction
accuracy [27], and it is necessary to continuously monitor
the system dynamics and perform timely updates [9], which
unfortunately can be challenging for RL with a large action
space, particularly at the edge.

Our work is inspired by RL-based algorithms, particularly
the recent advances in deep Q-learning cite. Our algorithm
considers multiple influential factors, including the replace-
ment cost that has yet to be addressed in previous studies, and
significantly reduces the action space to facilitate real-time
updates.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the system model of video
streaming services assisted by edge computing. Then, we
discuss the replacement cost and formulate our problem with
the objective of maximizing the hit rate of the cached videos.

A. Architectural View

We consider a video streaming system with a remote cloud
server and a set of edge servers. An edge server is deployed
between end-user devices and the cloud server [5], [28],
serving its nearby users. Without loss of generality, we focus

3

on the interaction among the cloud server, an edge server, and
its users. With virtually unlimited storage space, the cloud
server maintains a complete set of all videos [28], whereas
the edge server closer to end users can only cache a small
number of videos given its limited storage.

Fig. 1: A conceptual architecture of video caching with edge
servers.

In Fig. 1, we present a high-level illustration of how the
online video caching system with the edge server works. The
interactions of the three key players, namely, cloud server,
edge server, and end user, are briefly described below.

1) For a video of interest, a user first sends a request to
the edge server in its close proximity to fetch the video;

2) If the requested video has been cached by the edge
server, the video is streamed to the user directly; other-
wise, the user’s request is redirected to the cloud server
[29]. In both cases, the request is logged to help the
edge server make future decisions;

3) The edge server executes the caching algorithm period-
ically to update the cached videos. Once a stale video is
replaced with a new video, it downloads the new video
from the cloud server. Meanwhile, requests for the stale
video are interrupted and redirected to the cloud server.
Before the new video is completely downloaded by the
edge server, any request for the new video is still served
by the cloud server.

Ideally, both the cloud server and an end user prefer that a
request from the user is served by the corresponding edge
server. For the former, the edge server can effectively reduce
its service load and bandwidth cost. For the latter, the edge
server potentially improves the QoS given its closer distance.

As in previous studies [30], we assume that each video
stream is divided into a series of segments of the same size.
A request for a particular video can then be converted into
sequential requests for different video segments. To simplify
the system management, we assume that different segments
of the same video have similar popularity characteristics, and
hence, the experience of a segment can be used to facilitate
the prediction of other segments. Our solution, however,
will also work with segments with heterogeneous lengths and
popularity. Hereafter, we use “video" and “video segment"
interchangeably in our discussion.

B. Replacement Cost

Assume that the edge server has decided to replace stale
video i1 with a new video i2 at time t; we need to consider
the following two costs:
• Download Cost: The edge server needs to download

video i2 from the cloud server into local storage before
serving user requests;

• Interruption Cost: The streaming for video i1 will be in-
terrupted, and its ongoing users need to rebuild connec-
tions with the cloud server to resume their downloading,
as illustrated in Fig. 2.

These costs can be massive in a system with a large number
of requests. For instance, in our dataset collected from
Tencent Video, nearly a hundred requests are intercepted
by the cache in each millisecond during peak hours. More
specifically, the download costs consist of three components.

1) The running time of the caching decision algorithm, as
it may take milliseconds to predict the popularity of a
single video [9].

2) The communication time between the edge and the
cloud, including the latency for request communication
[30] and the time for video transmission [10];

3) The time to write new videos to the memory of the edge
server [31]–[33].

Let B denote the size of each video segment. The time
taken by the edge server to complete the replacement can
be calculated as:

td = tp +
B

de
+
B

we
. (1)

Here, tp is the time to run the replacement decision
algorithm, de is the download speed from the cloud server by
the edge server, and we is the speed of writing video content
into the memory. 2 Note that an implication here is that the
requests for video i2 during period [t, t+td) cannot be served
by the edge server.

The interruption cost is measured by the hit misses due
to the replacement of stale video i1, as illustrated in Fig. 2.
Clearly, if the replacement is not well decided, the interrup-
tion cost can be prohibitive.

Fig. 2: The interruption cost of replacing a stale video
segment.

2 If the download and write operations are executed in parallel, we can
change the download cost to td = tp+ B

dc
, and our later solution framework

will still apply.

4

C. Problem Formulation

Given the replacement costs, our objective for the cache
decision is to maximize the hit rate of the edge server. As
we discussed in the last subsection, a request may be inter-
rupted and redirected to the cloud server before streaming is
completed. Thus, a video segment request j is successfully
hit if the following two conditions are met: 1) The requested
video segment is cached by the edge server when request j
arrives; and 2) The streaming of this segment is completely
served by the edge server.

Assume that there are m requests in total for different
video segments. We split the timeline into a series of time
slots of identical length. A slot is the basic time unit in our
model, and to accommodate dynamics, our video caching
algorithm is executed in each slot from 0 to T . Let qtj denote
whether request j has been successfully hit by the edge
server at time slot t. If the video streaming for request j is
completed during the period from t− 1 to t and the request
is fully served by the edge server, we have qtj = 1; otherwise
qtj = 0. The objective, i.e., the hit rate of the edge server,
can be defined as:

CHR =

T∑
t=1

m∑
j=1

qtj . (2)

To maximize the hit rate, two constraints should be con-
sidered. The first is the cache space limit at the edge server.
Assume the cache decision of video segment i at time slot
t is represented by ait, where ait = 1 if the edge server
decides to cache or has cached video segment i, and ait = 0
otherwise. Assume that the edge server can cache at most
C video segments. We have

∑m
j=1 a

j
t ≤ C. The second

constraint comes from the finite bandwidth capacity of the
edge server. Assume the edge server can download up to
L video segments from the cloud server in each time slot.
Here, L is determined by the network capacity between the
cloud server and the edge server, which in general will not
be L =∞ unless this constraint is relaxed in a resource-rich
network.

We use ci to represent the caching state of video segment
i, whose value is given by

cit =


0, Segment i is not cached at time slot t
ε, Segment i is being downloaded, where 0 < ε < 1

1, Segment i is cached at time slot t.
(3)

For request j to access video i, qtj can be calculated by

qtj =

{
1, j completed at t and cit′ = 1,∀t′ ∈ (tsj , t),

0, otherwise,
(4)

where tsj is the starting time slot of request j.
As we discussed, it takes td time slots to complete the

operation to cache a video. It is possible that td > 1. When
0 < cit < 1, it indicates that downloading video segment i is
in progress.

The caching state cit of segment i can then be calculated
as follows:

cit+1 =

{
0, if ait = 0,

min(1, cit + 1
td

), if ait = 1.
(5)

If ait = 0 and ait−1 = 1, it means that the video is deleted
from the edge server at time slot t; If ait = 1 and ait−1 = 0,
then the edge server caches video i at time slot t.

We also define a binary indicator with 1 if the video is
being downloaded by the edge server, and 0 otherwise. That
is

I
(
cit
)

=

{
1, 0 < cit < 1;

0, otherwise.
(6)

We can then define the optimal video cache replacement
problem for the edge server as

max
ait,∀i,t

CHR =

T∑
t=1

m∑
j=1

qtj

s.t. C1 : ait ∈ {0, 1}, ∀i, t,

C2 :

n∑
i

ait ≤ C, ∀t,

C3 :

n∑
i=1

I
(
cit
)
≤ K, ∀t,

C4 : (4), (5).

(7)

IV. OPTIMIZING CACHING WITH DEEP Q-LEARNING

To solve the problem in Eq. (7), we need to identify the
relation between the caching decisions ait’s and the hit rate
CHR, which unfortunately is extremely complicated. On the
one hand, the caching decisions of different videos affect the
hits of each other because the caching space is limited and
the videos have to compete with each other; on the other
hand, there is a latency between a caching decision and the
resulting request hits given the download cost, making the
real-time decision during peak hours very difficult.

Inspired by recent advances in data-driven optimization,
we resort to deep reinforcement learning (DRL) for this
decision-making problem [11]. DRL can learn the impact
of multiple environmental factors and iteratively refine the
actions to be taken in a complex environment to maximize
the cumulative rewards over time. For the video caching
problem, we can map each edge server’s cache to an agent,
and caching a particular video can be regarded as an action;
the environment can be defined as the network transmission
process that is affected by the agent’s action, such as where
the user should obtain the video of their request. The ob-
jective of maximizing the hit rate then becomes identifying
the actions towards maximizing the reward. Due to the
complicated interaction between the environment and each
action, it is impractical to derive the exact relation between
each action (i.e., caching a video) and the hit rate objective.
Rather than modeling this complicated relation explicitly,

5

TABLE I: Notation list

Notation Meaning
st The state of the system at time slot t
at The action of the edge server at time slot t
Rt Rewards harvested by the edge server at time slot t
π Cache policy of the edge server
sit The state of video i at time slot t
ai The caching action for video i
ci The cache state of video i
qtj Indicator on whether request j is

completely served by the edge server at time slot t
hikt k time window of video i at time slot t
C The maximum number of video segments the

edge server can hold
V π(s) The value of video i with policy π and initial state s
Γ(s|θ) The neural network to fit the value function

V π(s) with parameter θ
Qπ(s,a) The Q-value of the executed action a at state s

with policy π

the recent deep Q-learning (DQN) algorithm can utilize a
neural network to learn the reward of each action [11]. The
parameters of the neural network can be tuned through the
trial of different caching decisions, i.e., experience groups.
A remarkable advantage of DQN is that an approximately
optimal strategy can be found even if the system encounters a
new state. This is done by utilizing the trained neural network
and fits the video caching scenario well with continuous
video and request arrivals.

In this section, we detail mapping the video caching
problem to the DRL framework and the solution with DQN.
We summarize the key notations used in our model in Table I.

A. Problem Mapping to DRL and DQN

Consider a general case in which the timeline is split into
discrete slots of identical lengths and the decision is made
at the end of each time slot based on the system’s state with
the aim of maximizing the total reward.

At time slot t, the system’s state is denoted by st, and the
adopted action is denoted by at. In the next time slot, the
environment (i.e., the system) evolves into state st+1, and
the obtained reward is Rt = R(st,at, st+1). This notation
implies that the reward at time t is determined by the current
state, the action, and the next state. The objective is to find
a policy π that can make an appropriate action at each time
slot to maximize the total reward over time. Policy π (also
called strategy) can be formally defined as π = [a1,a2, . . .],
where a1 is the first action for the state s1 at time slot 1.
The state space and the action space are represented by S
and A, respectively.

The total expected reward of a policy π (also called the
V-value function) since the state s at time t is defined as

V π(s) = E

[∞∑
k=0

γkrk+t|st = s, π

]
. (8)

where γ < 1 is a discount factor, and rk+t is the
expected reward for policy π at time slot t+ k, i.e., rt+k =
Ea∼π(st+k) [R(st+k,a, st+k+1)]. V π(s) is the expected re-
ward if policy π is adopted and the initial state is s.

The optimal policy is denoted as π∗, which should achieve
the highest V-value function since the state s. Thus we have

π∗ = arg max
π∈Π

V π(s). (9)

Here, Π is the set of all policies. Solving Eq. (9) is very
complicated given the difficulty of deriving the transition
probabilities from the current state to the next state, par-
ticularly for a large-scale system with large state and action
spaces.

Now, we employ the DQN algorithm [11] to solve the
problem defined in Eq. (9). For a policy π, let us define the
Q function as Qπ(s,a) : S × A −→ R, which represents the
expected reward of policy π by adopting the action a with
the initial state s. It means that

Qπ(s,a) = E

[∞∑
k=0

γkrk+t|st = s,at = a, π

]
.

=
∑
s′∈S

Pa(s, s′) [R(s,a, s′) + γV π(s′)] (10)

For a Markov decision problem (MDP), e.g., our caching
decision problem, the Q function can be rewritten recursively
as

Qπ(st,at) =
∑

st+1∈S
Pat

(st, st+1)
(
R(st,at, st+1)

+ γQπ(st+1,at+1)
)
. (11)

Here, Pat(st, st+1) is the transition probability from state
st to state st+1 given action at. Similar to the definition of
the V-value function, the optimal Q-value function is defined
by the maximum value of Eq. (11) achieved by any policy,
which is

Q∗(s,a) = max
π∈Π

Qπ(s,a). (12)

An optimal policy should always choose the action maxi-
mizing the Q-value function, and thus

π∗(s) = arg max
a∈A

Q∗(s,a). (13)

If we know the Q-value function for any state and action
pair, we can choose the optimal action that maximizes the Q-
value. However, it is usually difficult to precisely derive the
expression of Eq. (11) for a large-scale system. Instead, we
resort to approximately learning the Q-value function with a
neural network. It has been proven that a neural network can
extract information effectively from high-latitude input [34].
The optimal policy π∗should maximize the Q-value function,
and we have

Q∗(st,at) = Rt + γ max
π(st+1)∈A

Q∗(st+1, π(st+1)). (14)

Here, Rt = R(st,at, st+1) is the reward at time slot t. Let
Qπ(s,a|θ) denote the neural network that can approximate
the Q-value function with parameter θ. The neural network

6

can be trained with the experience groups obtained by trials
with different actions. Specifically, we define an experience
group as (st,at, st+1, R(st,at, st+1)) for a trial by choosing
action at given that the current state is st and the resulting
next state is st+1. According to Eq. (14), we can leverage an
experience group to define the loss function as

Loss(θ) = ‖Qπ(st,at|θ)−Rt−γ max
at+1∈A

Qπ(st+1,at+1|θ)‖2.
(15)

The optimal policy should minimize this loss function.
Considering this principle, the DQN algorithm trains the
neural network, maximizes the Q-value function, and refines
the policy iteratively. The neural network can be updated
according to the rule

θ ← θ − α∇θLoss(θ). (16)

where α is the learning rate. Once the neural network is
updated, the policy can be updated as

π(s) = arg max
a∈A

Qπ(s,a|θ). (17)

If the number of trials is large enough, i.e., the number of
experience groups is sufficient, the Q-value function Qπ(s,a)
gradually approaches Q∗(s,a), while policy π gradually
approaches π∗.

B. DQN-OVC: Online Video Caching with DQN
Although we mapped the video caching problem into

the DRL framework with the DQN algorithm, there remain
significant challenges for practical real-time implementation,
particularly the large sizes of the state space and the action
space.

Intuitively, the edge server should cache the video seg-
ments with the most need to maximize the hit rate, which is
related to the caching state and request history. The state of
video segment i at time slot t can be defined as a vector

sit =
[
cit yit hi1t hi2t . . . hikt

]
(18)

Here, ci represents the caching state of video segment i; yit
is the number of requests for video i at time t; hi1t , . . . , h

ik
t

represents the number of requests for video i in the past k
different time windows. The time windows can be flexibly
set, such as the past 5 or 10 time slots. We use k different
time windows to characterize the request patterns, where k
is a relatively small number, e.g., a default value of 6 in our
experiments. Although the current definition video segment
focuses on past request records, more parameters can be
incorporated into our model as they become available.

For video i, there are two possible actions: cache or not,
which can be represented by a binary number, i.e.,

ai =

{
1, Segment i is (to be) cached by the edge server;
0, Otherwise.

(19)

If we apply the DRL framework directly, the system state
will be s = [s1, s2, . . . , sn] given that there are a total of
n videos. Likewise, the action of the entire system is a =
[a1, a2, . . . , an]. Apparently, the sizes of both the state space
and the action space are exponential, and a feasible solution
can rarely be found in real time given a limited number of
experience groups and polynomial training time.

1) Decoupling Value and Action: We address this issue
by decoupling the value functions and the action functions
in the Q-value function. We revise the value function defined
in Eq. (8) according to the video caching problem as

V π1 (si) = E

[∞∑
k=0

γkRik+t|sit = si, ait = 1, π

]

V π0 (si) = E

[∞∑
k=0

γkRik+t|sit = si, ait = 0, π

]
. (20)

V π0 (si) and V π1 (si) represent the expected reward when
ait = 1 and ait = 0, respectively. Here, Rik+t is the reward at
time slot k + t, which is largely determined by the number
of requests for video i in each time slot, reflecting the value
of video i.

It remains difficult to explicitly derive the expression
of V π0 (si)/V π1 (si) defined in Eq. (20). Different from the
original DQN algorithm, we use the neural network de-
noted by Γ(si|θ) to fit the value function V π(si) =[
V π1 (si) V π0 (si)

]
. Through decoupling the value function

and the action of a video, the Q-value function of video i
can now be simplified as the product of i’s value function
and the action ai. That is

Qπ(si,ai|θ) = V π1 (si)ai + V π0 (si)(1− ai)
= Γ(si|θ) ·

[
ai 1− ai

]
. (21)

The Q-value function of the entire system is defined as

Qπ(s,a|θ) =

n∑
i=1

Γ(si|θ) ·
[
ai 1− ai

]
. (22)

We use the number of cache hits for the cached videos
on the edge server as the reward. If a video is not cached,
the reward offered by the video is 0, that is, V π0 (si) = 0. At
this point, the neural network only needs to predict V π1 (si).
We further let Γ1(si|θ) = V π1 (si). If ai = 1, the Q-value
function is the same as the video’s value; If ai = 0, the Q-
value of video i is 0. The Q-value function of a particular
video i can then be defined as

Qπ(si,ai|θ) = V π(si)a = Γ1(si|θ)ai. (23)

The Q-value function of the entire system is calculated as

Qπ(s,a|θ) =

n∑
i=1

Γ1(si|θ)ai. (24)

The decoupling operation is an essential simplification
that greatly reduces the computational complexity of our
algorithm, which can be explained from two perspectives:

7

• To reduce the computational complexity, we fit the
value function of all video segments with a single
neural network. Specifically, our approach sets up a
neural network to fit the value of each video segment.
The neural network is trained with experience groups
contributed by all video segments.

• The size of the action space is still exponential in our al-
gorithm. However, the optimal policy is straightforward
if the values of videos are known. By considering the
constraints C2 and C3, the optimal policy should use the
most valuable video that has yet to be cached to replace
the cached video with the least value.

2) Neural Network Training: With the newly defined Q-
value function, we can design DQN-OVC by revising the
original DQN algorithm. According to the DRL framework,
the optimal Q-value function should satisfy the relation in
Eq. (14). For the online video caching problem, let Aat

denote the set of available actions we can take based on the
current action at with constraints C2 and C3. The maximum
Q-value function should meet the revised relation as

Q∗(st,at) = Rt + max
π(st+1)∈Aat

Q∗(st+1, π(st+1)). (25)

Here, we set γ = 1 as we focus on a fixed period, and
the numbers of hits at different time slots are identical. The
cardinality of Aat is much smaller than that of A. As we will
show later, the best action in Aat

can be determined without
computing each action’s Q-value. Rt is the reward obtained
at time slot t by choosing an action at. For our video caching
problem, Rt is defined as the number of successful hits at
time slot t. Recall that we count the number of requests that
have completed their video streaming from the edge server
at time slot t as the number of successful hits at time t. Thus
we define the rewards at time t as

Rt =

m∑
j=1

qtj . (26)

where qtj is defined in the last section with value 1 if the
request j has completed its video streaming from the edge
server at time slot t, and 0 otherwise.

With an experience group, the loss function is defined as

Loss(θ) =‖
n∑
i=1

Γ1(sit|θ)ait −Rt−

max
at+1∈Aat

n∑
i=1

Γ1(sit+1|θ)ait+1‖2.

=‖Γ1(st|θ) · at −Rt − max
at+1∈Aat

Γ1(st+1|θ)at+1‖2.

(27)

where at+1 = [a1
t+1, . . . , a

n
t+1]. The neural network

Γ1(si|θ) can be trained by substituting the new loss function
of Eq. (27) back to Eq. (16).

3) Action Choice: To obtain the optimal caching policy,
we still need to revise Eq. (17). Recall that there are con-
straints C2 and C3, which restrict that at most L, videos
be downloaded at the same time from the cloud server.
Intuitively, if the caching space is not fully occupied, the
edge server only needs to download the missing videos of
the highest values to fill up the caching space. Otherwise,
the cached videos with the lowest values are replaced. If
their values are less than the values of certain missing videos,
they are replaced by these videos. The value of each video is
estimated by the neural network Γ1(st|θ) at different states.

Alg. 1 presents the action choice algorithm, which de-
scribes the cache decisions based on constraints of C2 and
C3. Briefly, Alg. 1 has two stages.

1) Stage 1 (from line 2 to line 16): In this stage, the edge
server collects candidate videos that may be cached in
the edge server, namely, the videos already cached by
the edge server and the best L videos that are missing
from the edge server. Since C + L � n, this stage
can significantly reduce the computational load to select
videos in the next stage;

2) Stage 2 (from line 17 to line 31): The edge server selects
the videos to be cached and the videos to be replaced
from the candidate list suggested in Stage 1.

4) The DQN-OVC Algorithm: Finally, we present our
DQN-OVC algorithm in Alg. 2. Alg. 2 has three stages,
which are briefly described below.

1) Stage 1 (from line 4 to line 7): The edge server collects
necessary information from the environment, such as
state s and reward R, which are used later for decision-
making and model training;

2) Stage 2 (from line 8 to line 18). The edge server selects
action a based on its state s with Alg. 1. The cached
video is updated by action a.

3) Stage 3 (from line 19 to line 28): The edge server
obtains a new experience group based on its video
caching decision in Stage 2. A recent experience group
is randomly selected from the experience group pool to
update the neural network (which is used to predict the
value of each video).

V. PERFORMANCE EVALUATION

We evaluated our DQN-OVC algorithm under diverse
configurations with both real-world trace data and synthetic
data and compared it with state-of-the-art solutions. In this
section, we present representative results to demonstrate the
effectiveness of our solution.

A. Dataset

1) Real Dataset: We collected user request records from
Tencent Video, one of the largest online video service
providers in China, for a one-month period. There are
162,597,411 records in total, including requests for assorted
video categories such as TV series, movies, news, MV, and
UGC. As mentioned earlier, to simplify caching management,
all videos are divided into segments with a default size of

8

Algorithm 1: The action choice algorithm
Input:

The state of all the videos sit;
The cache size of the edge server C;

Output:
The best action of this time slot at;

1: Get the value of each video γ = Γ(
[
s1
t s2

t . . . snt
]
)

2: /* Collect the cached video and the best L uncached
video*/

3: Build List Vc
4: Build Heap Vuc where the head node is the minimum

value node
5: for vi in V do
6: if ci = 1 then
7: Vc.append(vi)
8: else
9: if γi > Vuc.head then

10: Vuc.push(vi)
11: if Vuc.len > L then
12: Vuc.pop()
13: end if
14: end if
15: end if
16: end for
17: Build Heap V ′ with Vc ∪ Vuc where the head node is

the maximum value node
18: /* Make decisions based on the limit of C2 and C3 */
19: Initialize feasible action at =

[
0 0 . . . 0

]
20: c = 0, k = 0
21: while V ′.len > 0 and c<C do
22: /* Cache decisions are made from the most profitable

videos in turn */
23: vi = V ′.pop()
24: if ci = 1 then
25: at[i] = 1; c = c+ 1
26: else
27: if k<K then
28: at[i] = 1; c = c+ 1; k = k + 1
29: end if
30: end if
31: end while
32: return at

100 MB, which results in a total number of 26,903,816 video
segments for the requests.

The distribution of the popularity of these video segments
is highly skewed. There is only a small portion of segments
(approximately 15%) that are popular, attracting most of
the requests. In contrast, 85% of the video segments were
requested less than once a day, and 40% of the segments
were requested only once in the 30-day trace collection
period. Given the large user base, the total number of user
requests was quite large — during peak hours, there could
be approximately 37,000 requests in 30 seconds.

Algorithm 2: The DQN-OVC algorithm
1: Initialize Γ() with θ.
2: Initialize experience pool E
3: for every time slot t do
4: /* Get status s and reward R from environment */
5: Respond to user requests
6: Statistical Rt =

∑
∀j q

t
j by Eq. (4)

7: Update st with current request status
8: /* Agent makes decisions and updates the cached

video based on at */
9: Get the best action at by Alg. 1 base on st

10: for ait in at do
11: if ait = 1 and ait−1 = 0 then
12: caches video i
13: end if
14: if ait = 0 and ait−1 = 1 then
15: deleted video i from the edge server
16: Update cit by Eq. (6)
17: end if
18: end for
19: /* Save experience and training agents */
20: Et = (st,at, Rt, st+1)
21: Save experience group E.append(Et)
22: if E.len > max experience pool size then
23: Remove the earliest experience group
24: end if
25: Pick a random sample Er = (sr,ar, Rr, sr+1)
26: Get the best action a′r+1 by Alg. 1 based on sr+1

27: Update
θ = θ − α∇θΓ1(sr) · ar −Rr − Γ1(sr+1) · a′r+1

28: end for

2) Synthetic Dataset: We also tested our algorithm with a
synthetic dataset as in set [35]. The dataset consists of 5,000
files and 10,000 requests, which were generated according to
the Zipf distribution:

f(i;β,N) =
1/iβ∑N
n=1 1/nβ

(28)

where i is the file rank, N is the total number of videos, and
β is the Zipf parameter that shapes the distributions, which
is set to 1.3 in our experiments.

B. Experimental Settings

1) Settings of Edge Server: We consider a typical scenario
in which an edge server is deployed to serve users in a
municipality. The average bandwidth for users to access
the cloud/edge server is set to 8/25 Mbps, and the average
bandwidth for the edge server to fetch a video from the cloud
server is set to 100 Mbps.

The edge server makes caching decisions every second.
The maximum number of videos that the edge server can
simultaneously download from the cloud server is set to L =
50. We set the cache capacity of the edge server to 100, 200,

9

300, 400, 500, 600, 700, 800, and 1,000 segments in our
experiments, which are all constrained in comparison to the
total number of video segments.

2) Settings of DQN-OVC: The number of requests over
the past 30 seconds is kept as the system state, which is
divided into 6 time windows of equal duration. In other
words, the duration of each time window hikt in the system
state lasts 5 seconds.

The number of hit requests Rt on the edge server is used
as the reward at time slot t. We use the record in the past
hour as experience groups. Since the edge server performs an
action every second, we maintain the latest 3,600 experience
groups to train the neural network. In every second, 2 to
5 experience groups are randomly selected for training, and
the neural network model used by the edge server is updated
every 10 minutes.

Since we use 6 time windows, there are 8 elements in the
system state. Thus, the neural network has 8 input nodes and
1 output node. We set up two hidden layers, and there are
10 nodes in each hidden layer. We set the learning rate as
1e− 9, which is a relatively low rate that avoids overfitting.

3) Performance Results: We report the experimental re-
sults, i.e., hit rates, for the first 4 days because the pattern
approximately repeats for the 30 days.

C. Baseline Algorithms

We compare the DQN-OVC algorithm with three base-
line algorithms: heuristic caching algorithms, popular-
ity prediction-based algorithms, and advanced DRL-based
caching algorithms. An offline optimal algorithm (OFF) is
also implemented by assuming that the edge server can al-
ways make the best caching decisions with the knowledge of
future requests. For a fair comparison, all caching algorithms
can obtain user request records in the past 30 seconds.

1) Heuristic Algorithms: For heuristic algorithms, we im-
plement LFU and AViC as representatives. LFU [36] selects
the segment with the most historical requests for caching
based on the number of user requests in the past 30 seconds.
The AViC algorithm [37], removes the segment with the
furthest request time in the future through request prediction.
In the streaming mode with continuous access to the video
segments, the algorithm estimates the expected access time
of the next segment based on the length of the segment.

The FIFO algorithm needs to maintain the start caching
time of each video. Whenever a new uncached video is
requested, the original cached video is replaced. The LRU
algorithm is similar, except that it records the last request
time of each video. Each time a new uncached video is
requested, the originally requested video is replaced.

By considering the replacement cost, it is not feasible to
apply LRU and FIFO with the Tencent Video dataset because
these two algorithms update cached videos with every new
request. The request rate in the Tencent Video dataset is so
high that the caching replacement cannot be finished before a
new request arrives. Thus, we only compare LRU and FIFO
with the synthetic dataset.

2) Supervised Learning-Based Algorithms: We imple-
ment LSTM and FNN as two representatives for supervised
learning-based algorithms. Both the LSTM algorithm [19]
and the FNN algorithm [38] utilize neural networks to
predict future popularity changes and make caching decisions
based on the predicted popularity. In our experiments, both
algorithms predict the number of video requests in the next
20 seconds.

For both algorithms, there are 18 input nodes and 6 output
nodes. The FNN sets up a fully connected neural network,
while the other uses an LSTM network. There are two hidden
layers, and each hidden layer has 10 nodes.

D. Experimental Results

Fig. 3: Comparing hit rates when the cache size is 500

1) Hit rate over time: The first experiment is designed to
compare the hit rate performance of different caching algo-
rithms over time by fixing the caching capacity at C = 500.
We plot the experimental results in Figs. 3, in which the
x-axis represents the time over the 4 days while the y-axis
represents the hit rate. Although our algorithm makes caching
decisions every second, we only plot the average hit rate
every 4 hours in case the data points are too dense in the
figure.

Note that OFF is best since it knows future requests in
advance, which is impractical in the real world; however,
it offers a performance bound for evaluating the remaining
room for improvement. By comparing the hit rate perfor-
mance of these caching algorithms, we make the following
observations:

• DQN-OVC outperforms all other caching algorithms
and is very close to OFF. One of the reasons that DQN-
OVC outperforms these baselines is that the replace-
ment cost is considered in our algorithm, which has
been largely neglected by these baselines. In particular,
the performance gap between DQN-OVC and other
algorithms increases during peak hours from 9:00 to

10

TABLE II: Comparing the running time of different algo-
rithms

Algorithm Run time per decision
DQN-OVC 6.669ms

LSTM 25.790ms
FNN 5.230ms

10:00 and 18:00 to 24:00. This indicates that DQN-
OVC can rapidly adjust cached videos during peak hours
according to the latest request trend.

• LSTM and FNN are better than LFU and AViC, and
LSTM is slightly better than FNN because of its
more advanced model. The AViC algorithm also makes
caching decisions based on video popularity prediction;
it is a simple heuristic algorithm. It requires user con-
tinuous access to the video segment to be effective.
At peak hours, it achieves a higher hit rate than other
algorithms based on neural networks. However, in the
early morning hours, when the number of requests is
relatively small, it is worse than the LFU algorithm,
possibly because users frequently pause or stop video
playback.

In addition, we compare the average running time of DQN-
OVC with that of other algorithms. As we can see in Table
II, the running time of DQN-OVC is comparable to that of
LSTM and FNN at the scale of milliseconds. The low running
time of DQN-OVC can support the edge server in making
caching decisions every second.

Fig. 4: Comparing different caching algorithms with different
caching capacities.

2) Varying Caching capacity: In Fig. 4, we compare
the average hit rates of the caching algorithms by varying
the caching capacity from 100 to 1,000. The x-axis is the
caching size, whereas the y-axis is the average hit rate.
This experiment is designed to demonstrate how the caching
capacity influences the hit rate performance. The average hit
rate increases monotonically with caching capacity for all
algorithms. It is worth noting that the DQN-OVC curve is

Fig. 5: Comparing the average hit rates of different algo-
rithms by different settings of the replacement cost.

very stable, which indicates it always considerably outper-
forms other algorithms except for OFF.

3) Comparison with Different Settings of Replacement
Cost: To evaluate how the replacement cost affects the hit
rate performance, we conduct this experiment to compare the
average hit rate of each algorithm with different settings of
the replacement cost.

As we have discussed in Sec. III, there are two kinds of
replacement cost, based on which we setup the replacement
cost in four different ways:

1) I-cost and d-cost: Both download cost and interruption
cost are included.

2) D-cost: Only download cost is included.
3) I-cost: Only interruption cost is included.
4) No cost: No replacement cost is included.

No cost means that the replacement operation of a particular
video can be completed instantly. Although ignoring the
replacement cost is impractical in real systems, we can better
evaluate other baselines since the replacement cost has not
been considered in their design.

The cache size of each algorithm is fixed at 300. The
experiment results are presented in Fig. 5, from which we
can observe that:

• The hit rate performance of DQN-OVC is always bet-
ter than other baselines with different settings for the
replacement cost. The reason is that the deep rein-
forcement learning inside DQN-OVC can automatically
learn experiences under different environments such as
different settings of the replacement cost.

• The replacement cost lowers the hit rate performance
for all algorithms because the hits during the period of
video replacement are removed from the statistics of the
hit rates.

• The improvement of the hit rate achieved by DQN-
OVC is more significant when the replacement cost is
considered. This result indicates that DQN-OVC can

11

outperforms baselines better in real systems in which
the replacement cost must be included.

4) Comparison of Improvement Room: To visualize the
remaining improvement room of each caching algorithm, we
normalize the hit rate of each algorithm to the best hit rate
achieved by the OFF algorithm. The normalized hit rate is
in the range from 0 to 1. If it is closer to 1, it implies that
the remaining improvement room is smaller, and vice versa.

The experimental results are plotted in Fig. 6, in which the
normalized hit rates are compared over time. Again, DQN-
OVC achieves the best-normalized hit rate. Interestingly, we
find that the normalized hit rate of DQN-OVC is close to
1 during the peak hours, especially from 18:00 to 23:00
each day. In contrast, there is room for performance im-
provement during light-load periods, such as early morning.
We speculate that a large number of user requests emerge
during the peak hours only for a few popular videos. In
this case, our DQN-OVC can rapidly react according to
the latest trend and consequently achieves the best hit rate
performance. However, during the light-load periods, there
is less concentration on the user requests, and thus, the hit
rates of all caching algorithms degrade, even though the total
number of user requests is lower.

Fig. 6: Comparing the normalized hit rates of different
algorithms over time.

5) Comparing DRL-based Algorithms: Finally, we further
compare DQN-OVC with other DRL-based algorithms; in
particular, the Wolpertinger algorithm developed by Zhong et
al. very recently [35]. The algorithm adopts the Wolpertinger
structure to make caching decisions and, based on the actor
output, uses the K-neighbor algorithm to find the executable
set of discrete actions. The expected reward of each exe-
cutable discrete action is calculated, and the action with the
highest reward is selected for execution.

In its implementation, the Wolpertinger algorithm consid-
ers the number of requests for a file within the most recent 10,
100, 1,000 requests to make caching decisions and uses two
neural networks with 384 and 96 hidden nodes. In contrast,
we only use a small neural network with 6 hidden nodes.

TABLE III: Comparing the running time of DRL-based
algorithms

Algorithm Runtime per decision
DQN-OVC 0.207ms

Wolpertinger 1.513ms

Because of the large action space and the high complexity
of neural networks, the Wolpertinger algorithm cannot be
directly applied to the Tencent Video dataset with high-speed
request rates. For this comparison, instead of using a real
dataset as in the above experiment, we use the synthetic
dataset generated according to reference [35].

The comparison of the hit rate with the synthetic dataset
is presented in Fig. 7. We can observe that the performance
of DQN-OVC is almost identical to that of Wolpertinger,
and both of them significantly outperform other heuristic
algorithms.

The advantage of DQN-OVC, however, lies in the low
computational complexity. We further compare the running
time of DQN-OVC and Wolpertinger in Table III. Notably,
the running time of our algorithm is much shorter than that
of Wolpertinger. This much shorter running time enables
us to apply highly adaptive and responsive DQN-OVC,
particularly in large-scale systems with a massive number
of user requests.

Fig. 7: Comparing different caching algorithms with different
caching capacities.

VI. CONCLUSION

In this paper, we examined the cost of online video
caching at edges and proposed a novel algorithm for real-
time cost-aware caching. Our algorithm, leveraging the deep
reinforcement learning framework, optimizes the cache hit
rate with more realistic constraints than existing studies. We
enhanced the basic deep Q-learning through smart space re-
duction, which minimizes the computational time, making the
implementation highly adaptive and responsive. Experimental
results show that our algorithm can achieve a much better hit

12

rate than baseline algorithms under diverse configurations.
In the future, we will seek to deploy our algorithm in real
systems, address various practical challenges, and closely
investigate how to further improve its hit rate during light-
load periods.

ACKNOWLEDGEMENT

This work has been partially supported by National Key
R&D Program of China under Grant No.2018YFB1800302
and No.2018YFB1800805, National Natural Science
Foundation of China under Grant No.61772345,
61772139, 61902257 and 61872215, Natural Science
Foundation of Guangdong Province under No.
2021A1515012633, Shenzhen Science and Technology
Program under Grant No. RCYX20200714114645048, No.
JCYJ20190808142207420, No. GJHZ20190822095416463
and No. RCYX20200714114523079, the Pearl River Young
Scholars funding of Shenzhen University, the project “PCL
Future Greater-Bay Area Network Facilities for Large-scale
Experiments and Applications (LZC0019)" and Australia
Research Council under DE180100950.

REFERENCES

[1] Sandvine, “Global internet phenomena report,” Tech. Rep., 2019.
[2] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative

mobile edge computing in 5g networks: New paradigms, scenarios,
and challenges,” IEEE Communications Magazine, vol. 55, no. 4, pp.
54–61, April 2017.

[3] Cisco, “Cisco visual networking index: Global mobile data traffic
forecast update 2015-2020,” Tech. Rep., 2016.

[4] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. Leung, “Cache
in the air: Exploiting content caching and delivery techniques for 5g
systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 131–
139, 2014.

[5] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358,
Fourthquarter 2017.

[7] L. Chen, L. Song, J. Chakareski, and J. Xu, “Collaborative content
placement among wireless edge caching stations with time-to-live
cache,” IEEE Transactions on Multimedia, vol. 22, no. 2, pp. 432–
444, Feb 2020.

[8] M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog-computing-based radio
access networks: Issues and challenges,” Ieee Network, vol. 30, no. 4,
pp. 46–53, 2016.

[9] H. S. Goian, O. Y. Al-Jarrah, S. Muhaidat, Y. Al-Hammadi, P. Yoo,
and M. Dianati, “Popularity-based video caching techniques for cache-
enabled networks: A survey,” IEEE Access, vol. 7, pp. 27 699–27 719,
2019.

[10] S.-H. Park, O. Simeone, and S. Shamai, “Joint cloud and edge
processing for latency minimization in fog radio access networks,”
in 2016 IEEE 17th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC). IEEE, 2016, pp.
1–5.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[12] Z. Ye, F. D. Pellegrini, R. El-Azouzi, L. Maggi, and T. Jimenez,
“Quality-aware dash video caching schemes at mobile edge,” in 2017
29th International Teletraffic Congress (ITC 29), vol. 1, Sep. 2017, pp.
205–213.

[13] H. Pang, J. Liu, X. Fan, and L. Sun, “Toward smart and cooperative
edge caching for 5g networks: A deep learning based approach,” in
2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS), June 2018, pp. 1–6.

[14] Y. Zhou, L. Chen, C. Yang, and D. M. Chiu, “Video popularity
dynamics and its implication for replication,” IEEE Transactions on
Multimedia, vol. 17, no. 8, pp. 1273–1285, Aug 2015.

[15] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery
network,” in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 2017, pp. 483–498.

[16] N. Beckmann, H. Chen, and A. Cidon, “Lhd: Improving cache hit rate
by maximizing hit density,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), 2018, pp. 389–403.

[17] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. Shen, “Content
popularity prediction towards location-aware mobile edge caching,”
IEEE Transactions on Multimedia, vol. 21, no. 4, pp. 915–929, April
2019.

[18] P. Zhou, K. Wang, J. Xu, and D. Wu, “Differentially-private and trust-
worthy online social multimedia big data retrieval in edge computing,”
IEEE Transactions on Multimedia, vol. 21, no. 3, pp. 539–554, March
2019.

[19] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang,
“Deepcache: A deep learning based framework for content caching,”
in Proceedings of the 2018 Workshop on Network Meets AI & ML.
ACM, 2018, pp. 48–53.

[20] Z. Song, D. S. Berger, K. Li, A. Shaikh, W. Lloyd, S. Ghorbani,
C. Kim, A. Akella, A. Krishnamurthy, E. Witchel et al., “Learning
relaxed belady for content distribution network caching,” in 17th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 20), 2020, pp. 529–544.

[21] J. Sung, K. Kim, J. Kim, and J. K. Rhee, “Efficient content replacement
in wireless content delivery network with cooperative caching,” in
2016 15th IEEE International Conference on Machine Learning and
Applications (ICMLA), Dec 2016, pp. 547–552.

[22] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement
learning-based framework for content caching,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS), March 2018,
pp. 1–6.

[23] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms
in information-centric networking,” IEEE Communications Surveys
Tutorials, vol. 17, no. 3, pp. 1473–1499, thirdquarter 2015.

[24] Z. Piao, M. Peng, Y. Liu, and M. Daneshmand, “Recent advances of
edge cache in radio access networks for internet of things: Techniques,
performances, and challenges,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 1010–1028, Feb 2019.

[25] J. Kwak, Y. Kim, L. B. Le, and S. Chong, “Hybrid content caching in
5g wireless networks: Cloud versus edge caching,” IEEE Transactions
on Wireless Communications, vol. 17, no. 5, pp. 3030–3045, May 2018.

[26] Y. Guo, B. Zou, J. Ren, Q. Liu, D. Zhang, and Y. Zhang, “Distributed
and efficient object detection via interactions among devices, edge,
and cloud,” IEEE Transactions on Multimedia, vol. 21, no. 11, pp.
2903–2915, Nov 2019.

[27] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the
wireless edge: design aspects, challenges, and future directions,” IEEE
Communications Magazine, vol. 54, no. 9, pp. 22–28, Sep. 2016.

[28] A. Mehrabi, M. Siekkinen, and A. Ylä-Jääski, “Qoe-traffic optimiza-
tion through collaborative edge caching in adaptive mobile video
streaming,” IEEE Access, vol. 6, pp. 52 261–52 276, 2018.

[29] J. Yao, T. Han, and N. Ansari, “On mobile edge caching,” IEEE
Communications Surveys Tutorials, vol. 21, no. 3, pp. 2525–2553,
thirdquarter 2019.

[30] S. Kumar, D. S. Vineeth, and A. F. A, “Edge assisted dash video
caching mechanism for multi-access edge computing,” in 2018 IEEE
International Conference on Advanced Networks and Telecommunica-
tions Systems (ANTS), Dec 2018, pp. 1–6.

[31] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1826–1857,
2018.

[32] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the internet of things,” IEEE access,
vol. 6, pp. 6900–6919, 2017.

[33] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable

13

iot architecture based on transparent computing,” IEEE Network,
vol. 31, no. 5, pp. 96–105, 2017.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[35] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep reinforcement
learning-based edge caching in wireless networks,” IEEE Transactions
on Cognitive Communications and Networking, vol. 6, no. 1, pp. 48–
61, 2020.

[36] L. Maggi, L. Gkatzikis, G. Paschos, and J. Leguay, “Adapting caching
to audience retention rate: Which video chunk to store?” arXiv preprint
arXiv:1512.03274, 2015.

[37] Z. Akhtar, Y. Li, R. Govindan, E. Halepovic, S. Hao, Y. Liu, and S. Sen,
“Avic: a cache for adaptive bitrate video,” in Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies, 2019, pp. 305–317.

[38] V. Fedchenko, G. Neglia, and B. Ribeiro, “Feedforward neural net-
works for caching: n enough or too much?” ACM SIGMETRICS
Performance Evaluation Review, vol. 46, no. 3, pp. 139–142, 2019.

Laizhong Cui is currently a professor in the
College of Computer Science and Software Engi-
neering at Shenzhen University, China. He received
a BS degree from Jilin University, Changchun,
China, in 2007 and a PhD degree in computer
science and technology from Tsinghua University,
Beijing, China, in 2012. His research interests
include future internet architecture and protocols,
edge computing, multimedia systems and applica-
tions, blockchain, Internet of Things, cloud and
big data computing, computational intelligence and

machine learning. He led more than 10 scientific research projects, including
the National Key Research and Development Plan of China, National Natural
Science Foundation of China, Guangdong Natural Science Foundation of
China and Shenzhen Basic Research Plan. He has published more than 70
papers in journals including IEEE Transactions on Knowledge and Data
Engineering, IEEE Transactions on Multimedia, IEEE IoT Journal, IEEE
Transactions on Industrial Informatics, IEEE Transactions on Vehicular
Technology, IEEE Transactions on Network and Service Management, ACM
Transactions on Internet Technology, IEEE Transactions on Computational
Biology and Bioinformatics and IEEE Network. He serves as an associate
editor or an editorial board member for several international journals, includ-
ing IEEE Transactions on Network and Service Management, International
Journal of Machine Learning and Cybernetics, International Journal of Bio-
Inspired Computation, and Ad Hoc and Sensor Wireless Networks. He is a
senior member of the IEEE and a senior member of the CCF.

Erchao Ni received a BEng degree from Shenzhen
University, Shenzhen, China, in 2018. He earned
his MPhil degree from the College of Computer
Science and Software Engineering of Shenzhen
University in 2020. His research interests include
edge computing and reinforcement learning.

Yipeng Zhou is a Senior Lecturer in computer
science with the Department of Computing at
Macquarie University and the recipient of the ARC
DECRA in 2018. From August 2016 to February
2018, he was a research fellow with the Institute for
Telecommunications Research (ITR) of the Uni-
versity of South Australia. From 2013 to 2016, he
was a Lecturer at the College of Computer Science
and Software Engineering, Shenzhen University.
He was a Postdoctoral Fellow with the Institute of
Network Coding (INC) of the Chinese University

of Hong Kong (CUHK) from Aug. 2012 to Aug. 2013. He earned his PhD
degree and MPhil degree from the Information Engineering (IE) Department
of CUHK, and his Bachelor degree in computer science from the University
of Science and Technology of China (USTC). His research interests lie in
federated learning, differential privacy and edge computing

Zhi Wang is currently an associate professor at
Shenzhen International Graduate School, Tsinghua
University. He received his Ph.D. in 2014 and his
B.E. in 2008, both from Tsinghua University. His
research areas include edge computing, distributed
machine learning, and multimedia networks. He is
a recipient of the Natural Science Award of the
Ministry of Education (First Prize) in 2017, the
National Natural Science Award (Second Prize) in
2018, the Shenzhen Youth Science and Technology
Award in 2019, and the Technology Invention

Award of the Chinese Institute of Electronics (First Prize) in 2020. In
addition, his research won the Best Paper Award of ACM Multimedia,
the Outstanding Doctoral Thesis Award of China Computer Federation, the
Best Student Paper Award of MMM, and the Best Paper Award of ACM
Multimedia, HUMA Workshop.

Lei Zhang (S’12-M’19) received a BEng degree
from the Advanced Class of Electronics and In-
formation Engineering, Huazhong University of
Science and Technology, Wuhan, China, in 2011,
and an MS degree and the PhD degree from Simon
Fraser University, Burnaby, BC, Canada, in 2013
and 2019, respectively. He is a recipient of the C.D.
Nelson Memorial Graduate Scholarship (2013) and
Best Paper Finalist at IEEE/ACM IWQoS (2016).
He is currently an assistant professor at the College
of Computer Science and Software Engineering,

Shenzhen University. His research interests include multimedia systems and
applications, mobile cloud computing, edge computing, social networking,
and the Internet of Things.

14

Jiangchuan Liu (S’01-M’03-SM’08-F’17) is a
university professor in the School of Comput-
ing Science, Simon Fraser University, British
Columbia, Canada. He is a Fellow of The Canadian
Academy of Engineering, an IEEE Fellow, and
an NSERC E.W.R. Steacie Memorial Fellow. He
was an EMC-Endowed Visiting Chair Professor of
Tsinghua University (2013-2016). In the past, he
worked as an assistant professor at the Chinese
University of Hong Kong and as a research fellow
at Microsoft Research Asia.

He received a BEng degree (cum laude) from Tsinghua University,
Beijing, China, in 1999, and a PhD degree from Hong Kong University
of Science and Technology in 2003, both in computer science. He is a
corecipient of the inaugural Test of Time Paper Award of IEEE INFOCOM
(2015), ACM SIGMM TOMCCAP Nicolas D. Georganas Best Paper Award
(2013), and ACM Multimedia Best Paper Award (2012).

His research interests include multimedia systems and networks, cloud
and edge computing, social networking, online gaming, and Internet
of things/RFID/backscatter. He has served on the editorial boards of
IEEE/ACM Transactions on Networking, IEEE Transactions on Big Data,
IEEE Transactions on Multimedia, IEEE Communications Surveys and
Tutorials, and IEEE Internet of Things Journal. He is a steering committee
member of IEEE Transactions on Mobile Computing and Steering Commit-
tee Chair of IEEE/ACM IWQoS (2015-2017). He is a TPC Cochair of IEEE
INFOCOM’2021.

Yuedong Xu is an associate professor in the
School of Information Science and Technology,
Fudan University, China. He received his PhD
in computer science from the Chinese University
of Hong Kong (with Prof. John C.S. Lui), MS
degree from Huazhong University of Science and
Technology, and BS degree from Anhui University.
From late 2009 to 2012, he was a postdoc with
INRIA Sophia Antipolis and Universite d’Avignon,
France (with Prof. Eitan Altman). His areas of
interest include performance evaluation, data an-

alytics, machine learning and economic analysis of computer networks.

