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Abstract—The rapid growth of rich multimedia data in today’s
Internet, especially video traffic, has challenged the content
delivery networks (CDNs). Caching serves as an important means
to reduce user access latency so as to enable faster content
downloads. Motivated by the dynamic nature of the real-world
edge traces, this paper introduces a provably well online caching
policy in dynamic environments where: 1) the popularity is
highly dynamic; 2) no regular stochastic pattern can model
this dynamic evaluation process. First, we design an online
optimization framework, which aims to minimize the dynamic
regret that finds the distance between an online caching policy
and the best dynamic policy in hindsight. Second, we propose
a dynamic online learning method to solve the non-stationary
caching problem formulated in the previous framework. Com-
pared to the linear dynamic regret of previous methods, our
proposal is proved to achieve a sublinear dynamic regret, from
which it is guaranteed to be nearly optimal. We verify the
design using both synthetic and real-world traces: the proposed
policy achieves the best performance in the synthetic traces
with different levels of dynamicity, which verifies the dynamic
adaptation; our proposal consistently achieves at least 9.4%
improvement than the baselines, including LRU, LFU, Static
Online Learning based replacement, and Deep Reinforcement
Learning based replacement, in random edge areas from real-
world traces (from iQIYI), further verifying the effectiveness and
robustness on the edge.

Index Terms—Dynamic Environment, Online Learning, Dy-
namic Regret.

I. INTRODUCTION

THE introduction is divided into three parts to elaborate
on the general context of this section. We will start with

the background and motivation, then analyze some of the most
relevant works, and finally summarize our method and main
contributions.

A. Background and Motivation

The explosion of multimedia applications has caused signif-
icant backbone traffic in content distribution, bringing the de-
mand for high-quality multimedia content to an unprecedented
level, e.g. video traffic is predicted to reach 77.5EB/month by
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2022 [13]. This challenges the traditional centralized content
distribution architectures. Using edge content distribution has
thus been proposed to improve service capacity and reduce
backbone bandwidth consumption [8], as traffic is localized
since the content is cached and served from edge devices (e.g.
base stations, home wireless routers) closed to the users.

As compared to conventional centralized content delivery
networks with dedicated data centers for a large region (e.g. a
city), edge content devices usually have much more limited
service range (e.g. a college or even a building). Previous
measurement results show that requests can be served within
several hundred meters if cellular base stations can be utilized
as edge content caches [10]. As a result, such edge content
serving makes requests extremely sparse at each edge device,
and the request patterns include both the popularity distribu-
tion and request volume vary tremendously over time.

Using trace-driven measurement, we show the non-
stationary nature of requests captured in a real-world trace
– the iQIYI dataset [8]. In Fig.1a, we use the JS divergence
to measure the difference between popularity distributions of
two sequential hours in each day, with different area sizes
varying from 1072 km2 to 1.1 km2 as described in Fig.1b.
The JS divergence, which is a measure of the similarity of
different distributions, between two sequential hours is over
0.2, suggesting that the cached contents at an edge area are
changing continuously over time. When the size of an edge
area is smaller (i.e. “edgeness” increases), the JS divergence
becomes larger, suggesting that edge cache encounters more
dynamical request change. In Fig.1c, the curves represent the
number of requests of selected contents over time. We observe
that the different contents have dramatically different request
patterns, suggesting that no uniform distribution pattern can
model all the contents. The results suggest that the real-world
requests are highly dynamic without regular stochastic pattern
especially on the edge, which motivates us to seek a solution
that robustly performs well in such non-stationary scenarios.

B. Most Related Work

In contrast with the stationary environment where the pop-
ularity remains unchanged, the non-stationary property has
challenged previous dynamic content replacement solutions,
as summarized in Table I.

Model-based methods, including offline machine learning
methods [17]–[19] and conventional schemes, such as Least
Frequently Used (LFU), Least Recently Used (LRU), and their
variants [6], are based on assumptions of static or regular
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Fig. 1: (a) JS-divergence between popularity distributions of two sequential hours in a day for different edge area sizes. (b)
Geographic coordinates of the corresponding areas in (a). (c) Number of requests to four different videos in the same edge
area in two weeks.

popularity distribution, as they usually assume stationary [11],
regular evaluation (e.g. Poisson Noise Model [14], Indepen-
dent Reference Model [5]), or adversary request [12] pattern.
They are claimed to be optimal by maximizing the hit rate
expectation under the above distribution assumptions, which
are not true in edge content delivery. Thus, their optimization
results may be invalid in real-world traces, where the popu-
larity of content has no regular patterns as they assumed.

Deep Reinforcement Learning (DRL) methods [20]–[24],
[26], [27], [37], which address the dynamic challenge with
empirical designs (e.g. neural networks, hyperparameters), are
claimed to perform well in dynamic settings without prior
knowledge. However, since Deep RL-based methods have no
strict theoretical guarantee and rely on hyperparameters, DRL
may only work well in particular situations by relying on
dedicated models.

Static Online Learning (OL) methods [9], [40] attempt to
minimize the static regret, which is the performance gap
between an online learning algorithm and the best static policy
in hindsight. Static OL does not make any assumptions on the
popularity pattern, and has a provably guarantee to fare against
the best static policy, thus is claimed to be nearly optimal.
However, since the popularity distribution varies rapidly over
time (especially on the edge) as we studied, the best static
policy that makes no content replacement will not perform
well in the real-world traces. Therefore, faring against the
best static policy would not guarantee the non-stationary
performance.

To sum up, our method could give out a provable guarantee
of the performance, do well in adapting to the dynamic
edge environment and do not make any prior assumptions
to generalize to different content patterns, compared to other
previous methods.

C. Methodology and Contributions

In this paper, we aim to design a provably well caching
algorithm for dynamic environments with no prior distribution
assumptions. To achieve this, we first design an online opti-
mization framework for measuring the caching performance
based on the dynamic regret which focuses on dynamic
scenarios and better to build up the model [44], which is the

TABLE I: Comparison with most related work.

Solution No prior
assumption

Stationary
guarantee

Non-stationary
guarantee

Model-based 7 7 7
Deep RL X 7 7
Static OL X X 7
Ours X X X

“Deep RL” represents deep reinforcement learning based policy
and “Static OL” represents static online learning. There is no pre-
vious method that guarantees the performance in both stationary
environments where the distribution pattern is unknown and non-
stationary without prior assumption.

distance between an online learning algorithm and the best
dynamic policy in hindsight. We prove that a caching policy
with sublinear dynamic regret is guaranteed to approach the
best dynamic policy in hindsight; otherwise, those with linear
dynamic regret would suffer from performance decay in some
cases. Then we propose an adaptive Nearly Optimal Cache
(NOC) replacement strategy based on dynamic online learning,
aiming to achieve sublinear dynamic regret. NOC runs an
Online Gradient Descent (OGD) algorithm with dynamic
stepsize that comes from our novel analysis, where we give a
general dynamic regret bound for OGD-liked methods.

In our theoretical results, we prove NOC to have a sub-
linear dynamic regret, from which our solution is promising
to adaptively handle and perform well in different request
patterns, including static and dynamic circumstances. Besides,
previous methods, including conventional policies and static
online learning policy [40], are proved to have linear dynamic
regret, and thus work badly in dynamic environments. Exper-
imentally, we first verify our design’s dynamic adaptation by
synthetic traces with different levels of dynamicity. NOC per-
forms well in static traces and achieves the best performance in
different dynamic situations, which supports the claims in our
analysis. We then verify the edge effectiveness and robustness
in real-world traces (from iQIYI) with different area sizes and
random locations. NOC consistently outperforms in all area
sizes, and gets more than 9.4% (averaging over randomly sam-
pled locations) improvement than other baselines, including
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LRU, LFU, Static Online Learning based policy – OGA [40]
and Deep Reinforcement Learning based policy – DRL [20].

As a study that is the most similar to our proposal, OGA
[40] uses an OGD-based method1 to minimize the static regret,
which ignores the dynamic goal and loses generality in dy-
namic environments. From this point of view, our fundamental
idea of algorithm design and analysis has nothing in common
with the previous one. To the best of our knowledge, there
is no previous solution that targets the dynamical request
patterns in edge content distribution, with a strict theoretical
dynamic regret guarantee. The contributions of our study are
summarized below.

B We propose a new online optimization framework for
online caching based on the dynamic regret, which practically
captures the distance between a cache replacement strategy
and the best dynamic policy in hindsight. In this framework,
an online caching strategy with a sublinear dynamic regret is
guaranteed to have nearly optimal performance with a provable
theoretical guarantee.

B We design an adaptive dynamic stepsize for online gra-
dient descent that minimizes the dynamic regret accordingly,
and propose an adaptive Nearly Optimal Cache (NOC) caching
strategy. In our analysis, NOC is proved to achieve a sublinear
dynamic regret of O(T (1+δ)/2), δ ∈ [0, 1), which guarantees
NOC to perform well in different patterns to overcome the
edge complex situation. In contrast with conventional strate-
gies such as LRU, LFU, LRU-k [1], LRFU [7], and sublinear
static regret strategies [9], [40], we give out their linear
dynamic regret lower bound, from which their performances
are consistently worse than NOC in dynamic environments in
the worst case.

B We use synthetic traces and real-world traces (from
iQIYI) to verify our design: NOC works well for synthetic
traces with both the static pattern and different degrees of
dynamicity, which verifies the dynamic adaptation and sup-
ports our theoretical analysis. We then evaluate our solution
on iQIYI traces with different area sizes and locations. NOC
keeps obvious outperformance than baselines, including LRU,
LFU, OGA, and DRL, which verifies the effectiveness and
robustness on edge.

The rest of the paper is organized as follows. We provide the
system model and online optimization framework in Sec. II.
We propose the algorithm, analysis and theoretical compar-
isons in Sec. III. We evaluate our design in Sec. IV. We survey
related work in Sec. V and conclude the paper in Sec. VI.

II. PROBLEM FORMULATION

In this section, we formulate the edge cache replacement
problem with dynamical request patterns as an online learning
problem.

A. Non-stationary Online Learning Framework

At each time step t = 1, . . . T, the online learner takes a
decision yt in a convex set K. After, the environment reveals a

1In [40], the online algorithm ascends a concave function, which is
equivalent to descend its negative counterpart.

convex loss function lt : K → R, and the online learner suffers
a loss lt(yt). The dynamic regret is a theoretical metric for the
performance of online algorithms in changing environments,
defined as

DA-RegretT =
T∑
t=1

lt(yt)−
T∑
t=1

lt(ut),

where {ut, t = 1, . . . , T} is the dynamic competitor in
hindsight. Achieving a sublinear dynamic regret bound is
not possible unless specific constraints are made about the
competitor [44]. A famous one is the path-length [44]:

V (T ) =
T−1∑
t=1

‖ut − ut+1‖,

which measures the degree of freedom of the competitor.
Usually, we assume V (T ) ≤ O(T δ), δ ∈ [0, 1) since when
the V (T ) ≥ O(T ), it is impossible to achieve a sublinear
dynamic regret [44].

B. System Model
In the edge cache system, we assume that there is a content

set N = {1, 2, . . . , N}, to be requested by users. Without loss
of generality, we assume these contents are of the same size
1, and each content item can be cached by the edge device
with capacity C. We use xt, t ∈ {1, 2, . . . , T} to denote
the sequential requests received at an edge cache device,
where t is the index of the request in the sequence; And
xt = (x1

t ,x
2
t , . . . ,x

N
t ), is a one-hot vector to identify the

content item requested by the t-th request, where xntt = 1
if nt is the only content item being requested at time slot t
and xit = 0, i 6= nt. We further use a cache status vector
yt = {y1

t ,y
2
t , . . . ,y

N
t } for the ease of presentation, where

yit ∈ [0, 1],
∑
i y

i
t ≤ C and yit denotes the caching probability

of file i. 2

Therefore, a cache performance function ft(yt) can be
defined to measure how well the edge cache performance
is, which can be hit rate [40], bandwidth economization
[2], QoS improvement [3], or any other concave evaluation.
Without loss of generality, we use cache hit rate in our study,
ft(yt) = xᵀ

t yt. We also define a caching policy by σ (e.g.
LRU, LFU), and yt(σ) to be the cache status vector provided
by caching policy σ by the t-th request.

C. Best Dynamic Policy in Hindsight
In the ideal case, we aim to find the the best dynamic policy

σ∗ with V (T ) ≤ O(T δ), δ ∈ [0, 1) times of replacements,
to maximize the average cache performance over time, as
follows.

σ∗ = arg max
σ

1

T

T∑
t=1

ft(yt(σ))

s.t. yt(σ) ∈ [0, 1]N , ‖yt(σ)‖1 ≤ C, t = 1, 2, · · · , T
T−1∑
t=1

‖yt+1(σ)− yt(σ)‖ ≤ V (T ).

2In practical systems, yi
t should be rounded, i.e., the policy caches the

contents with the highest probability yi
t, while replacing the content with the

lowest probability. Similar modeling can be referred to previous work [40].
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Note that the above formulation is only for a “conceptual”
content replacement, and does not work for practical systems,
which can be viewed as the competitor in hindsight as non-
stationary online learning framework. It makes decisions by
using the “future” information in advance, while a practical
solution should generate decisions only from the past and cur-
rent information. Therefore, since the precise best policy is not
achievable in practice, we intend to propose an approximated
framework that aims to achieve nearly the best performance
via dynamic online learning.

Remark. Since the best dynamic policy in hindsight is clair-
voyant, the constrain of the cache replacement is necessary in
the ideal case (not for practice), or the optimization problem
will be meaningless as

max
σ

1

T

T∑
t=1

ft(yt(σ)) =
1

T

T∑
t=1

max
yt

ft(yt),

which means the hit rate is 100% for any situations (the clair-
voyant would always cache the contents of future requests),
and obviously, it is not attainable in practice.

D. Dynamic Regret of Caching Policy

To this end, we refine the above ideal model to the practical
approximated model, so that it can practically fit the real-world
edge cache scenario.

1) Definition of Dynamic Regret: We introduce the dynamic
regret that measures the gap between a practical caching
policy σ that makes decisions without “future” knowledge,
and the ideal best dynamic policy σ∗ (as defined previously)
in hindsight. More specifically, we define the dynamic regret
of caching policy σ as:

DA-RegretT (σ) =
T∑
t=1

ft(yt(σ
∗))−

T∑
t=1

ft(yt(σ)).

2) Relationship between Dynamic Regret and Caching Per-
formance: We present the following theorem to describe the
relationship between the proposed dynamic regret and caching
performance.

Theorem 1. If a caching policy has a sublinear dynamic regret
upper bound:

DA-RegretT (σ) ≤ O(Tα), α ∈ [0, 1),

with which, we can bound the gap of average performance
(e.g. average hit rate) between the optimal policy σ∗ and
online policy σ by

1

T

T∑
t=1

ft(yt(σ
∗))− 1

T

T∑
t=1

ft(yt(σ)) ≤ O(1/T 1−α).

The proof is direct from the definition. By Theorem 1, we
can claim that if a caching policy has a sublinear dynamic
regret bound, it is proved to achieve an approximated perfor-
mance with the best policy in hindsight when T → ∞. We
thus call it nearly optimal cache policy. In addition, as 1− α
represents the convergence rate to the optimal performance,
we want α to be as small as possible.

Theorem 2. If a caching policy has a linear dynamic regret
lower bound, i.e.

DA-RegretT (σ) ≥ O(T ),

with which, we have

1

T

T∑
t=1

ft(yt(σ
∗))− 1

T

T∑
t=1

ft(yt(σ)) ≥ O(1).

The proof is direct from the definition. By Theorem 2, an
online policy with linear dynamic regret would be a constant
worse than the optimal policy σ∗, thus works badly in some
cases.

3) Comparison with the static regret: The main difference
between static regret [40] and dynamic regret is the definition
of “competitor policy” that is chosen to compete against.
Specifically, the static regret compares the online performance
with a “static competitor policy” that makes no cache changes,
and the dynamic regret measures the bias with a “dynamic
competitor policy” that is able to replace the cached contents.
Minimizing the static regret and approximating the best static
policy is ineffective when dealing with non-stationary settings.
Therefore previously used static regret [40] is not suitable for
the dynamic caching problem.

III. NEARLY OPTIMAL SOLUTION

In this section, we first introduce a Nearly Optimal Cache
policy (Algorithm 1) based on Online Gradient Descent
(OGD) [43], and design our dynamic stepsize that fits the
dynamic environments. Then, we prove that our solution has
a dynamic regret bound sublinear to T and guarantees to
approach the optimal policy in hindsight, which outperforms
LFU, LRU, LRU-based schemes and static online learning
methods as we show that they are not able to approach such
optimal policy.

A. Nearly Optimal Cache (NOC)

In our study, we aim to design an algorithm that achieves a
sublinear bound for all T = 1, 2, · · · ,∞, with the following
goals: 1) the algorithm can minimize the dynamic regret
defined previously with a sublinear bound. 2) the parameter
selection should be adaptive and does not depend on T .

1) Online Gradient Descent Framework: In our design, we
use the Online Gradient Descent (OGD) iteration as follows:

yt+1 ← Πy∈KC (yt + ηt∇ft(yt)) ,

where ηt is the dynamic stepsize [43], KC = {yt ∈
[0, 1]N , ‖yt‖1 ≤ C} is the valid exploration space for yt as
the cached contents will not exceed the cache capacity, and
ΠKC (·) is a projection function that maps yt + ηt∇ft(yt) to
a valid cache decision.

We take the same projection method as [40], where the total
computational cost is O(NT ) as there is only one request
in each round, and the memory cost is O(N). Therefore the
computational cost is equivalent to LRU, and the memory cost
is the same as LFU, which maintains the same efficiency as
conventional methods.
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Algorithm 1 Nearly Optimal Cache (NOC)
Input: Cache capacity C, dynamic controller δ.
Initial: y1 = 0.
for t = 1, . . . , T do

Receive cache request xt, and reveal the cache hit ft(yt).
Calculate dynamic stepsize ηt = 1

t(1−δ)/2
.

Update yt+1 ← Πy∈KC (yt + ηt∇ft(yt)).
Replace the cached content i with the lowest yi

t by the noncached
content j with highest yj

t , if yj
t > yi

t.
end for

2) Dynamic Stepsize: With the above iteration scheme, the
main task is then to design an adaptive dynamic stepsize
that achieves the goals defined above. We first use a control
parameter δ such that V (T ) ≤ O(T δ), δ ∈ [0, 1). Next, we
provide our dynamic stepsize as follows.

ηt =
1

t(1−δ)/2
. (1)

Though the formulation is simple, it is the key factor
to guarantee a novel effect and requirement of the optimal
approach. The dynamic step size design is not straightforward
and actually comes from a strict dynamic regret analysis. We
will show its sublinear dynamic regret guarantee and analyze
its performance against conventional solutions as following.

B. Analysis of Dynamic Regret

In this subsection, we show the sublinear dynamic regret
bound is achievable with respect to the adaptive dynamic
stepsize.

1) General Dynamic Regret Bound: We first analyze the
parameterized bound for different choices of the dynamic
stepsize ηt in general, which helps the design of a nearly
optimal solution.

Theorem 3. (General bound). Assume there exists a fixed con-
stant G such that maxt ‖∇tft(yt)‖ ≤ G. For any algorithm
using online gradient descent with a non-increasing dynamic
stepsize ηt > 0, it has the following upper bound for all T .

DA-RegretT ≤
C

ηT
+
V (T )

2ηT
+

∑T
t=1 ηt
2

G2.

The proof detail is provided in Appendix A-A. To achieve
a nearly optimal solution, the dynamic step size must satisfy
both V (T )

2ηT
and

∑T
t=1 ηt ≤ O(Tα), α ∈ [0, 1).

2) Dynamic Regret of Our Design: We next verify our
design as following.

Theorem 4. (Dynamic Regret of NOC). Assume our control
parameter δ satisfies that V (T ) ≤ O(T δ). If the adaptive
dynamic stepsize follows our design in Eq. 1, where ηt =

1
t(1−δ)/2

, it will achieve a sublinear dynamic regret bound for
all T as follows.

DA-RegretT (NOC) ≤ O(T (1+δ)/2).

The proof detail is provided in Appendix A-B. By Theo-
rem 4, with a suitable choice of δ, we can always approach
the optimal performance when T → ∞, which implies
that our proposed NOC policy has nearly the same average
performance (e.g., hit rate) as the optimal policy.

Setting of δ. From Theorem 4, the parameter δ affects the
theoretical performance of NOC. Since the V (T ) depends on
the dynamics of the environment3, we could increase the value
of δ in a more dynamic environment, and decrease this value
in a relatively stable environment. In practice that has no prior
knowledge of suitable δ, we could just set δ = 1/2 as default
that meets all situations with less than O(T 3/4) regret when
V (T ) ≤ O(

√
T ).

Remark. We do not make any distribution assumption on
the request patterns, which means this upper bound holds for
any kind of request sequence and better fit the edge scenarios’
practical need.

C. Comparison with Previous Methods

1) Comparison with Conventional Schemes: Having ana-
lyzed the regret upper bound of our proposed design, we
next characterize the performance of conventional schemes
including LFU and LRU, which can be generalized to LRU-
k [1], LRFU (Least Recently Frequently Used) [7].

Note that LFU, which uses cumulative frequency counts, is
equivalent to FTRL (Follow the Regularized Leader) with any
step size parameters. Thus, it achieves a Tight Static Regret
via tuning the parameters by Theorem 5.1 of [43], from which
LFU can quickly achieve the optimal performance in static
environments. However, such a guarantee is invalid in dynamic
situations.

Theorem 5. (Dynamic Regret of LFU). The LFU policy has
the following dynamic regret lower bound:

DA-RegretT (LFU) ≥ O(T ).

The proof detail is provided in Appendix A-C.

Theorem 6. (Dynamic Regret of LRU). The LRU policy has
the following dynamic regret lower bound

DA-RegretT (LRU) ≥ O(T ).

The proof detail is in Appendix A-D. The proof can be
extended directly to variations of LRU, such as LRU-k [1],
LRFU (Least Recently Frequently Used) [7], which also have
linear regret.

From the above analysis and Theorem 2, LFU, LRU, and
LRU-based policies have O(T ) dynamic regret, which implies
they cannot give a considerable performance in non-stationary
settings.

2) Comparison with Static Online Learning: We further
compare our proposal to static online learning-based solutions.
In particular, we study the previous Online Gradient Ascent
(OGA) [40] and Follow the Perturbed Leader (FTPL)-based
[9] solutions.

The OGA policy takes a fixed stepsize ηt =
√
2C√
T

with OGD
framework. Though it achieves sublinear static regret, it has
linear dynamic regret as following.

3The optimal caching policy σ∗ caches the most popular contents. In the
dynamic environment, the content popularity is changing, thus the popular
contents change as well. Then the optimal caching policy σ∗ would replace
the out-of-date contents with new popular contents. When this dynamic is
severer, the number of replacements V (T ) becomes larger.
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Theorem 7. (Dynamic Regret of OGA). The OGA policy that
minimizes a static regret has the following lower bound for
dynamic regret:

DA-RegretT (OGA) ≥ O(T ).

The proof detail is provided in Appendix A-E.
The FTPL-based policy uses cumulative frequency counts

with added Gaussian noise for caching decisions. The analysis
shows that the FTPL policy has near-optimal static regret.
However, its expected (it is a stochastic method) dynamic
regret is linear as the following theorem.

Theorem 8. (Dynamic Regret of FTPL). The FTPL policy
that minimizes a static regret has the following lower bound
for dynamic regret:

E[DA-RegretT (FTPL)] ≥ O(T ).

The proof detail is in Appendix A-F. According to Theorem
7 and Theorem 8, minimizing the static regret can not solve the
dynamical content requests in the edge cache situation. How-
ever, in the real-world caching scenarios, dynamical request
patterns are common as shown in our measurement studies
before. Therefore such static online learning-based policies are
less efficient in handling the cache replacement.

IV. PERFORMACE EVALUATION

In this section, we evaluate our proposal using simulation
experiments based on synthetic traces and real-world traces
from iQIYI. First, we introduce the traces, baselines and
parameter settings in the experimental setup. Second, we verify
the dynamic adaptation of the proposed method with the syn-
thetic traces. Third, we verify NOC’s real-world performance
from the perspective of both “edgeness” (how small the edge
area is) and “robustness” (how stable the performance is).

A. Experimental Setup

1) Traces: Our simulation experiments are driven by the
following traces.

Synthetic Traces: to evaluate our design’s performance
in corner cases that cannot be well captured by real-world
traces, we also generate other request patterns. a) Zipf traces
generated by an independent and identically distributed (i.i.d.)
Zipf model [28] to model pure stationary environments; b)
Poisson Zipf traces generated by a Poisson shot noise model
[14] to model continuously changing environments; c) Zipf-
Shuffle traces generated by a shuffling Zipf model (varying
across time slots) to model suddenly changing environments.

Traces from iQIYI: we use the iQIYI traces, which record
not only the video requests but also the locations of the
requests. It contains 53954230 requests from 417077 contents
in the whole Beijing during 14 days. We show the request-
location distribution in Fig.2. We can map them to different
edge devices: a) We vary the service range of an edge cache
device from 15.5 × 17.4km2 to 2.0 × 2.2km2 to evaluate
the impact of the “edgeness” on our proposal’s performance;
b) We randomly select 20 representative areas with 2×2km2

area size as the edge regions to verify the “robustness” of
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Fig. 2: The geographic distribution of requests from iQIYI
traces.
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Fig. 3: The JS-divergence between the request distributions of
different areas. The x-axis and y-axis represent the area index
of the selected areas, and the color depth represents the JS
divergence between the request distribution area x and y. The
JS-divergence value shows that the content distributions are
different from each other.

NOC, since the request distributions are different among them
as shown in Fig. 3. The possible reason is that different
communities may have different preferences. For example, the
college community prefers different from the CBD (Central
Business District) community. We study the single cache
problem, and all representative areas only deploy one edge
server.

2) Baselines: We compare our design with the following
baseline solutions. a) Least Recently Used (LRU): the edge
cache device caches the most recently used content in the
cache and evicts those that are least recently used. b) Least
Frequently Used (LFU): the edge cache device caches the
most frequently used content in the cache and evicts those that
are least frequently used. c) Online Gradient Ascent (OGA)
[40]: a previous online learning-based policy that aims to
minimize the static regret. d) Deep Reinforcement Learning
(DRL) [20]: a Deep Reinforcement Learning-based policy with
Wolpertinger architecture that aims at maximizing the long-
term cache hit rate. We use the same parameter settings as in
the paper [20].
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Fig. 4: The average hit rate of the NOC policy and the baseline
algorithms.

Remark. Note that we do not compare with the FTPL
policy [9], since FTPL needs to sample N dimensional normal
vector in each round, which makes the computational cost too
large for evaluations with large content space.

3) Parameter Setting: Throughout the experiments, we
do not finetune the parameter. On the synthetic setting, we
do not intentionally select the synthetic cases where NOC
performs better. We mainly use the following configuration:
The Zipf parameter is 0.6 among all synthetic traces. The
Poisson parameter of the Zipf-Poisson traces is randomly
selected from [103, 105], and the shuffle times of Zipf-Shuffle
is uniformly selected from [0, 26]. We sample 50000 requests
of 240 contents in synthetic traces and take 100 requests as an
episode. We set the cache capacity C = 10. We use hit rate
as the performance metric. For fairness, we do not tune the
parameter of NOC, and fix δ = 0.5 as the default.

B. Verification of Dynamic Adaptation

1) Static Environment v.s. Dynamic Environment: We first
compare the average cache hit rate of NOC and the baseline
algorithms with Zipf and Poisson Zipf traces, which indicate
the static and continuously dynamic environment respectively.
As illustrated in the Fig.5a, we observe that in Zipf traces,
LFU achieves the best performance and quickly converges to
the best, which supports its tight static regret as previously
analyzed. NOC, OGA and DRL gets similar final performance
with LFU, with around 1% worse. This is because NOC and
OGA policies also have sublinear (not tight) static regret, and
DRL is designed to maximize the long-term cache hit rate.
Since OGA has a fixed stepsize designed for a fixed length
T of requests, it shows weaker adaptation during 1 ∼ T − 1.
LRU gets the worst hit rate since it has linear static regret
[40].

Compared to the good result in static traces, for the dynamic
environment with Poisson Zipf traces, NOC achieves the best
average hit rate (Fig. 4), which supports its sublinear dynamic
regret. Recalling in the previous analysis, LFU, LRU and OGA
have linear dynamic regret, and therefore perform 1.5% ∼
14% worse than NOC. Without a strict theoretical guarantee,
sophisticated designed DRL works 2.5% worse than NOC.
Notice in Fig.5b, due to the relatively stable environment in
a short time period, LFU could quickly achieve good results.
However, its performance degrades rapidly over time since
the popularity distribution changes with time. As NOC can
approach the optimal dynamic policy, it thus achieves good
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Fig. 5: Average cache hit rate versus episode in: (a) Zipf traces.
(b) Poisson Zipf traces.
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Fig. 6: Hit rate evaluation of NOC and other baselines under
different shuffle times in: (a) Zipf-Shuffle traces with different
shuffle times. (b) One trace with 16 times of shuffles.

results at the beginning and maintains the best performance
for a long time. This is consistent with our previous analysis.

2) Impact of Dynamicity: To further evaluate the dynamic
adaptation of NOC, we then investigate how the dynamicity
affects the performance of caching algorithms by running
experiments on the Zipf-Shuffle traces with different shuffle
times. According to Fig.6a, when the dynamicity increases (the
number of shuffles increases), the performance of LFU and
OGA decreases significantly, while the NOC policy keeps the
best performance (up to 7% hit rate improvement than OGA).
The reason is that the static regret could not model dynamic
environments, and therefore static regret minimization meth-
ods would lose their performance when dynamicity increases,
while NOC has sublinear dynamic regret and thus can adapt to
environmental changes. The synthesized traces prove that the
validation of dynamic adaptation. DRL has almost the same
result as NOC, showing that DRL also works well with sudden
changes as in previous paper [20].

To see how different algorithms dealing with environmental
changes are, we conduct on one Zipf-Shuffle trace with 16
times of shuffles and plot Fig.6b. LFU achieves the highest
performance before the distribution shuffle, but falls and
struggles to recover after shuffling. OGA has better adaptation
but is still difficult to adapt to the new environment. The result
aligns with our theory that LFU and OGA have sublinear
static regret and perform well in the static environment, but
have linear dynamic regret and work badly with environmental
changes. In contrast, NOC with sublinear dynamic regret is
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Fig. 7: Average cache hit rate versus the service range of an
edge device. The x axis is the ratio of area size with the largest
area.

close to LFU before shuffling, soon adapts to the environment
change, and becomes the best after shuffling, which verifies
the dynamic adaptation. We highlight that NOC does not make
any prior assumptions, and can fit into any dynamic practical
circumstance based on this point. DRL reacts to environmental
changes very similar to NOC, but it maintains larger memory
and computational cost because of feature memory and the
deep network. LRU performs not well all the time, which
aligns with its linear dynamic regret analysis.

C. Real-world Traces Results

1) Impact of Edgeness: To evaluate the impact of the
“edgeness” on our proposal’s performance, we vary the service
range of an edge cache device from 15.5 × 17.4km2 to
2.0×2.2km2 in the iQIYI dataset. As illustrated in Fig. 7, NOC
maintains 1% to 7% outperformance of hit rate compared to
baselines from big area to small area size. As the “edgeness”
increases, NOC shows more superiority than OGA and DRL,
which verifies that our method is suitable on the edge. Recall
in our trace measurement, the real-world requested pattern
has demonstrated high dynamics and diversities. OGA and
LFU are analyzed to have linear dynamic regret, thus are not
adaptive to dynamicity on the edge. DRL depends on manual
features that cannot model such diverse settings, from which
the bias makes the performance worse than NOC. Note that

It should be noted that the curve of LRU (increasing) is
different from others (decreasing). This is because the users
tend to repeatedly click the same content. For example, it may
take several clicks for a user to finish one video, especially
for the long-video platform as iQIYI, where the user may
interrupt the video for shifting to other apps due to the long
watching time. And when the user returns to iQIYI, it makes
a new request. Then, the repeatability (that the contents are
more likely to be recently requested) is more significant than
regularity (that the contents are requested by some popularity
pattern) in the edge, leading to the increasing pattern of
LRU and decreasing pattern of other learning-based methods.
However, since NOC can capture both the repeatability and
regularity, it still maintains a more remarkable outperformance
than LRU.

2) Robustness of NOC: We also extract the user traces
from the iQIYI dataset in 20 random areas with 2×2km2

area size. The request pattern of the traces in each area is

TABLE II: Average hit rate (first row) and average perfor-
mance rank (second row) of random areas in real-world traces.

Method NOC LRU LFU OGA DRL

Hit rate 12.8±0.7% 11.2±1.2% 6.5±0.5% 9.6±1.0% 11.7±0.8%
Rank 1.15± 0.47 2.95± 0.86 5.0± 0.0 3.7± 0.45 2.2± 0.50

considered to vary as the users may have different preferences.
We applied NOC on these traces to verify its robustness with
different patterns. The results are illustrated in Table II. NOC
keeps the best performance in almost all (as shown by the
average performance rank in the second row of the table) of
these areas, and up to 6.3% (97% improvement) better than
LFU, 1.6% (14% improvement) better than LRU, 3.2% (33%
improvement) better than OGA, 1.1% (9.4% improvement)
better than DRL. Therefore, we claim that NOC achieves at
least 9.4% improvement than the baselines. The reason is that
the sublinear dynamic regret, which has no prior assump-
tion, guarantees NOC to work well in different areas. This
demonstrates NOC’s superiority in real-world applications and
further supports the claims of robustness and effectiveness.
DRL policy shows good results in the setting of [20], and
performs better than OGA. However, it is worse than NOC
averagely, revealing that this model is not robust and may
only work well in specific settings.

V. RELATED WORK

A. Edge Content Caching

Several studies explored building caches at the “edge” of
networks, such as cellular base stations [33], [41]. Meanwhile,
edge content delivery also has the potential to reduce the end-
to-end delay [42]. Based on large-scale real-world traces, Ma
et al. [8] verified the performance of edge content delivery,
even under diverse user mobility patterns. To improve the
scalability of edge content delivery, distributed caching has
been studied [34]; and due to the limited resources at each edge
device, there are also studies focusing on collaborative caching
and coded caching strategies for edge content delivery [35]–
[38]. Another line of the literature studies the device-to-device
content delivery network [45]–[47], where the mobile devices
can also act as cache servers. At an edge cache, traditional
replacement strategies are usually straightforward, e.g. based
on request volume of each content item [15].

B. Popularity Dynamics in Edge Caching

However, the request patterns change significantly at an
edge cache device if it only serves a small group of users
nearby. Understanding the popularity patterns thus becomes
the key factor to improve edge content delivery performance.
Traverso et al. [14] introduced a Poisson shot noise model
to model dynamic popularities, and Qi et al. [16] proposed
to combine the independent reference model with shot noise
model. However, such popularity predictions are based on
the stochastic assumption, which is too strong in real-world
systems, e.g. content request patterns can be affected by many
other confounding factors like mobility and social influence.
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C. Non-stationary Replacement

1) Reinforcement Learning based Replacement: Other
studies aim to improve the robustness by model-free learning
algorithms by using RL to capture the changing content
popularity. Sadeghi et al. [21] proposed to let a cache node to
track the space-time popularity dynamics in an online manner.
Zhong et al. [20] proposed to use a deep RL framework
that utilizes Wolpertinger architecture to generate content
replacement decisions. Zhang et al. [26] proposed to model
the caching problem as a group linear model. Somuyiwa
et al. [24], [25] proposed to optimize a parametric policy
that determines cache replacement. Zhong et al. [4] proposes
deep actor-critic reinforcement learning based policies for both
centralized and decentralized content caching. Wang et al.
[37] integrated long short term memory network (LSTM) with
the actor-critic model to better handle time series dynamics
from the historical requests. However, previous reinforcement
learning-based solutions have the following drawbacks: most
of them are empirical without a strong theoretical guarantee on
performance, and the excellent performance may only stand on
specific settings. Thus, they lose the generality of their claims.

2) Online Learning based Replacement: Online learning
provides a design perspective with strong theoretical guaran-
tees and no prior assumption. To address the environmental
changes, Muller et al. [29]–[31] have proposed a contextual
bandit method, in which the agent learned from the time-
dependent features and predicted dynamically. However, stor-
ing and computing these features would take large memory
and computational costs, since the content space is often huge
in practice. Tan et al. [32] and Garg et al. [39] proposed to
use online learning to predict content popularity only from the
request history, and then made cache complication based on
the prediction. However, they only give the bound for accuracy
of popularity prediction, and the caching performance can not
be guaranteed.

As a study that is the most related to our proposal, [40] is
the first to connect the caching problem with online convex
optimization to minimize the static regret. They provided a
sublinear regret, which guaranteed that their online caching
strategy performed approximately to the best static policy. An
optimal static regret bound was achieved based on a Follow
the Perturbed Leader based policy by Bhattacharjee et al. [9],
which made the convergence faster. However, their solution
suffers under dynamic scenarios, since the best static policy
becomes worse as the environment changes.

VI. CONCLUSION

In this paper, we solve the problem of optimal caching in
dynamic environments, motivated by our trace-driven study of
iQIYI traces, via dynamic online learning. First, we connect
the above problem with the dynamic regret minimization
problem. Second, we propose a practical cache policy called
Nearly Optimal Cache (NOC), and prove it to have a sublinear
dynamic regret, which implies a consistent theoretical perfor-
mance with the optimal cache policy in hindsight. Also, we
give linear dynamic regret lower bound for previous methods;
as a result, previous methods would be degraded when the

environment changes. Finally, we show that NOC works well
for cache problems with static pattern and different degrees
of dynamicity, which validates the dynamic adaptation as in
theory. We also conduct experiments on real-world traces
with various area sizes and locations, where NOC keeps its
outperformance, supporting the effectiveness and robustness
on edge caching tasks.

APPENDIX A
PROOF

A. Proof of Theorem 3

Proof. Recall the definition of the dynamic regret

DA-RegretT =
T∑
t=1

ft(yt(σ
∗))−

T∑
t=1

ft(yt)

=
T∑
t=1

(−ft(yt))−
T∑
t=1

(−ft(yt(σ∗))),

where we rearrange it to compare the convex function −ft
(equivalent transformation from maximization to minimiza-
tion). For simply representation, we denote gt = −ft and
∇gt(yt) by ∇t. By the convexity of gt (concavity of ft), we
have for t = 1, . . . , T

gt(yt)− gt(yt(σ∗))
≤ ∇ᵀ

t (yt − yt(σ
∗))

= ∇ᵀ
t (yt+1 − yt(σ

∗)) +∇ᵀ
t (yt − yt+1)

=
1

ηt
ηt∇ᵀ

t (yt+1 − yt(σ
∗)) +∇ᵀ

t (yt − yt+1)

≤ 1

ηt
(yt − yt+1)ᵀ(yt+1 − yt(σ

∗)) +∇ᵀ
t (yt − yt+1).

The last inequality comes from the OGD iteration, the range
of stepsize ηt > 0, and projection property on convex set (i.e.
KC). The reason is that

(yt − yt+1)ᵀ(yt+1 − yt(σ
∗))

= (yt −ΠKC (yt − ηt∇t))ᵀ(yt+1 − yt(σ
∗))

= (yt − yt + ηt∇t)ᵀ(yt+1 − yt(σ
∗))

+ (yt − ηt∇t −ΠKC (yt − ηt∇t))ᵀ(yt+1 − yt(σ
∗))

≥ηt∇ᵀ
t (yt+1 − yt(σ

∗)).

We then decompose (yt − yt+1)ᵀ(yt+1 − yt(σ
∗)) into

(yt − yt+1)ᵀ(yt+1 − yt(σ
∗))

= yᵀ
t yt+1 − yᵀ

t yt(σ
∗)− yᵀ

t+1yt+1 + yᵀ
t+1yt(σ

∗)

=
1

2
(‖yt(σ∗)− yt‖2 − ‖yt+1 − yt‖2 − ‖yt(σ∗)− yt+1‖2).

Now, we have

gt(yt(σ
∗))− gt(yt)

≤ 1

2ηt
(‖yt(σ∗)− yt‖2 − ‖yt+1 − yt‖2 − ‖yt(σ∗)− yt+1‖2)

+∇ᵀ
t (yt − yt+1)

=
1

2ηt
‖yt(σ∗)− yt‖2 −

1

2ηt
‖yt(σ∗)− yt+1‖2

− 1

2ηt
‖yt+1 − yt‖2 +∇ᵀ

t (yt − yt+1).
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Since, we know that

1

2ηt
‖yt(σ∗)− yt‖2 −

1

2ηt
‖yt(σ∗)− yt+1‖2

=
1

2ηt
(‖yt(σ∗)− yt‖2 − ‖yt+1(σ∗)− yt+1‖2)

+
1

2ηt
(‖yt+1(σ∗)− yt+1‖2 − ‖yt(σ∗)− yt+1‖2).

Then, we have

gt(yt(σ
∗))− gt(yt)

≤ 1

2ηt
(‖yt(σ∗)− yt‖2 − ‖yt+1(σ∗)− yt+1‖2) (2)

− 1

2ηt
‖yt+1 − yt‖2 +∇ᵀ

t (yt − yt+1) (3)

+
1

2ηt
(‖yt+1(σ∗)− yt+1‖2 − ‖yt(σ∗)− yt+1‖2). (4)

Now, we consider to bound the above three terms step by
step. First, for equation (2)

T∑
t=1

1

2ηt
(‖yt(σ∗)− yt‖2 − ‖yt+1(σ∗)− yt+1‖2)

≤ 1

2

T∑
t=1

(
1

ηt
− 1

ηt−1
)‖yt(σ∗)− yt‖2

≤ 1

2ηT
max(‖yt(σ∗)− yt‖2)

≤ C

ηT
.

The last equation is from our definition of KC . Second, for
equation (3), we have

∇ᵀ
t (yt − yt+1)− 1

2ηt
‖yt+1 − yt‖2

=
1

2ηt
(2ηt∇ᵀ

t (yt − yt+1)− ‖yt+1 − yt‖2)

=
1

2ηt
(−‖yt − ηt∇t − yt+1‖2 + η2t ‖∇t‖2)

=
1

2ηt
(−‖yt+1 − yt+1‖2 + η2t ‖∇t‖2)

=
ηt
2
‖∇t‖2.

The last two inequality comes from the Pythagorean Theo-
rem [43]. Therefore,

T∑
t=1

(∇ᵀ
t (yt − yt+1)− 1

2ηt
‖yt+1 − yt‖2)

≤
T∑
t=1

ηt
2
‖∇t‖2

≤
T∑
t=1

ηt
2
G2.

Third, for equation (4), we have

T∑
t=1

1

2ηt
(‖yt+1(σ∗)− yt+1‖2 − ‖yt(σ∗)− yt+1‖2)

≤
T∑
t=1

1

2ηt
‖yt+1(σ∗)− yt(σ

∗)‖2

≤ 1

2ηT

T∑
t=1

‖yt+1(σ∗)− yt(σ
∗)‖2

=
V (T )

2ηT
.

Conbiming the above bounds for the three terms, we can
finally obtain

DA-RegretT ≤
C

ηT
+
V (T )

2ηT
+

T∑
t=1

ηt
2
G2.

B. Proof of Theorem 4

Proof. According to Theorem 3, we have

DA-RegretT (NOC) ≤ C

ηT
+
V (T )

2ηT
+
G2

2

T∑
t=1

ηt

= CT (1−δ)/2 +
1

2
V (T )T (1−δ)/2 +

G2

2

T∑
t=1

1

t(1−δ)/2

≤ CT (1−δ)/2 + V (T )T (1−δ)/2 +
G2

2

∫ T+1

1

1

t(1−δ)/2

= CT (1−δ)/2 + V (T )T (1−δ)/2 +
G2

1 + δ
t(1+δ)/2

∣∣T+1

1

≤ CT (1−δ)/2 + V (T )T (1−δ)/2 +
G2

1 + δ
T (1+δ)/2

≤ O(T (1+δ)/2).

C. Proof of Theorem 5

Proof. Creating an example to derive the worst case regret
is typical lower bound the online algorithm. Here, we aim
to create such an example where the content with the highest
frequency (calculated from the beginning) is not popular in the
latter part of the time. Thus, the LFU algorithm that depends
on the frequency signal will fail in that case. Assume that we
have a request sequence as {1, 1, · · · , 1, 2, 2, · · · , 2}, which
includes bT2 c requests to content item 1 and dT2 e requests to
content item 2. Suppose the cache size is only C = 1, and the
optimal cache is allowed to make V (T ) = 1 time of content
replacement, and the performance function is still the hit rate
ft(yt) = xᵀ

t yt. Hence, the optimal caching policy should
cache content 1 for the first bT2 c requests, and replaces it with
content 2 for the next dT2 e requests; and it thus achieves 100%
hit rate, while LFU can only hit the first bT2 c requests, as the
frequence of content 2 will never be larger than the frequence
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of content 1 during the last dT2 e requests. Thus, we conclude
that under the worst case, the dynamic regret for LFU will be

DA-RegretT (LFU) ≥ T − bT
2
c = dT

2
e = O(T ).

D. Proof of Theorem 6

Proof. Here, we aim to create such an example where the
recently requested content will not be requested in the next.
Thus, the LRU algorithm that depends on the recency signal
will fail in that case. Assume that we have a request sequence
{1, 2, 1, 2, · · · , 1, 2}, which includes dT2 e requests to content
item 1 and bT2 c requests to content item 2. Suppose the cache
size is C = 1 and the optimal cache is allowed to make
content set change by V (T ) = 1 time, and the performance
function is also the hit rate ft(yt) = xᵀ

t yt. Hence, the optimal
cache achieves 50% hit rate (hit dT2 e times after the first
content change to either content 1 or 2), and LRU misses
all the requests after the first request (with no content change
limitation). Therefore the dynamic regret has the below lower
bound.

DA-RegretT (LRU) ≥ O(T ) = dT
2
e − 0 = dT

2
e = O(T ).

E. Proof of Theorem 7

Proof. Here, we aim to create such an example where
learning step size of OGA [40] is too small to adapt to
the shifting request pattern. Thus, the OGA algorithm will
fail in that case. Assume that we have a request sequence
{1, · · · , 1, 2, · · · , 2, 3, · · · , 3, 4, · · · , b

√
T c}, which includes

b
√
T c requests for each content n = 1, 2, · · · , b

√
T c (T

requests in total). Suppose the cache size is C = 1 and
the optimal cache is allowed to make V (T ) =

√
T times

of replacement, and the performance function is hit rate
ft(yt) = xᵀ

t yt. Hence, the dynamic optimal cache achieves
100% hit rate (as it caches the b

√
T c new requested contents

in advance). On the other hand, the OGA policy can hit no
more than b(1 − 1

2
√
2
)T c requests. By the definition of [40],

when receiving a new requested content i (i = 1, . . . , b
√
T c),

it then takes more than d
√
T

2
√
2
e iterations to replace the previous

cached content by the new one. Therefore the OGA policy will
miss more than b

√
T

2
√
2
cb
√
T c = O(T ) requests. Thus, we have

the dynamic regret low bound for OGA:

DA-RegretT (OGA) ≥ O(T ).

F. Proof of Theorem 8

Proof. We create the same situation as in the proof of LFU.
Hence, the optimal caching policy achieves 100% hit rate,
while FTPL has no more than 1/2 popularity to hit the last
T
2 requests, as the frequence of content 2 will never be larger
than the frequence of content 1 during the last T

2 requests.

Thus, we conclude that under the worst case, the expected
dynamic regret for FTPL will be

E[DA-RegretT (FTPL)] ≥ T − T

2
− T

2
· 1

2
=
T

4
= O(T ).
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