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ABSTRACT
Online social network has reshaped the way how video con-
tents are generated, distributed and consumed on today’s
Internet. Given the massive number of videos generated
and shared in online social networks, it has been popular
for users to directly access video contents in their preferred
social network services. It is intriguing to study the service
provision of social video contents for global users with sat-
isfactory quality-of-experience. In this paper, we conduct
large-scale measurement of a real-world online social net-
work system to study the propagation of the social video
contents. We have summarized important characteristics
from the video propagation patterns, including social local-
ity, geographical locality and temporal locality. Motivated
by the measurement insights, we propose a propagation-
based social-aware replication framework using a hybrid edge-
cloud and peer-assisted architecture, namely PSAR, to serve
the social video contents. Our replication strategies in PSAR
are based on the design of three propagation-based repli-
cation indices, including a geographic influence index and
a content propagation index to guide how the edge-cloud
servers backup the videos, and a social influence index to
guide how peers cache the videos for their friends. By in-
corporating these replication indices into our system de-
sign, PSAR has significantly improved the replication per-
formance and the video service quality. Our trace-driven
experiments further demonstrate the effectiveness and su-
periority of PSAR, which improves the local download ratio
in the edge-cloud replication by 30%, and the local cache hit
ratio in the peer-assisted replication by 40%, against tradi-
tional approaches.

Categories and Subject Descriptors
C.2.4 [Distributed System]: Distributed Applications; H.4
[Information Retrieval]: Social Network
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1. INTRODUCTION
Recent years have witnessed the blossom of online social

network service (e.g., Facebook, Twitter) and online video
service (e.g., YouTube, Youku), as well as the rapid con-
vergence of the two services [28]. Social video contents, or
social videos in short that are generated and shared by users
in online social networks are becoming increasingly popular
on today’s Internet. ForeSee has reported that more than
18% users are influenced by the social network when ac-
cessing video contents [3]. It is fascinating to study how the
social video contents can be served to users with satisfactory
Quality-of-Experience (QoE).

In the online social network, users create and maintain
different social connections, e.g., friending their friends in
real life, following celebrities or even liking virtual social en-
tities. Such social connections determine which videos can
reach a user in the online social network [16]. The unique
propagation properties make the video access pattern in the
online social network quite different from that in the tra-
ditional centralized video service systems, in that (1) video
contents are no longer produced by a few centralized content
providers, but by all individual users; and (2) social connec-
tions and social activities determine the propagation of the
videos among the users.

We are facing the following challenges in distributing the
social video contents with satisfactory QoE: (1) A huge num-
ber of user-generated videos require a large amount of stor-
age and network resource, e.g., YouTube has hit a new
record of 60 hours’ worth of videos uploaded by users per
minute [4]; (2) Newly generated videos are the ones that
tend to attract most of the users, but it is difficult to esti-
mate their popularity for the video service allocation, which
are dynamically affected by the social network [9]; (3) So-
cial video contents have close-to-uniform and highly-volatile
popularity profiles, because a large portion of the videos are
shared among small social groups (e.g., family members).

Challenge (1) makes traditional service paradigms (e.g.,
C/S) not suitable, and a common practice to provision these
video services is to replicate videos in severs at different ge-



ographic regions [5] by allocating resource from the CDN
(Content Devilry Network) or cloud, where videos can be
dynamically placed to serve users all over the world. Chal-
lenges (2) and (3) make the traditional replication approaches,
which work well only for videos with skewed and stable pop-
ularity profiles, not suitable in the context of online social
network. Mislove et al. [21] have observed a large deduction
of cache hit ratio when traditional caching schemes are used
to replicate social contents. In this paper, we reveal a key
observation that the social videos, unlike regular videos, do
not propagate among users randomly. Instead, they propa-
gate along the social-network topology according to several
rules determined by the social propagation. Exploiting the
new design space enabled by this observation, we develop a
social-aware replication system — PSAR, to effectively dis-
tribute social videos with superb QoE.
First, we demonstrate that the statistic information ob-

tained from the online social network can guide the video
replication. We conduct large-scale measurement to explore
the connection between the social propagation and the repli-
cation, and discover the propagation characteristics of social
video contents, including social locality that videos are gen-
erally shared among users who are socially connected, geo-
graphical locality that most of the videos are shared between
users that are geographically close to each other, and tem-
poral locality that most of the activities are issued to videos
that are recently generated or shared.
Second, based on the measurement, we propose a hybrid

edge-cloud and peer-assisted video replication framework,
where videos are replicated by both the edge-cloud servers
and peers at different geographic locations. In this frame-
work, we are facing the following problems: (a) which videos
should be replicated to which edge-cloud servers? (b) how
much bandwidth should be reserved for each video by the
edge-cloud? and (c) which videos should be served by which
peers? We address these questions in the design of PSAR as
follows. (1) We summarize three replication indices from the
propagation patterns; (2) We design the edge-cloud replica-
tion strategies based on the geographic influence index and
content propagation index, determining the region selection
and bandwidth reservation for each video; (3) We further
design the peer-assisted replication based on the social in-
fluence index, performing social-aware cache replacement at
each peer.
The remainder of this paper is organized as follows. In

Sec. 2, we discuss related work. In Sec. 3, we motivate our
design by a measurement study on social video propaga-
tion. We present the architecture of PSAR in Sec. 4, and
the detailed design in Sec. 5. In Sec. 6, we evaluate the per-
formance of PSAR by trace-driven simulations. Finally, we
conclude the paper in Sec. 7.

2. RELATED WORK
Propagation in Online Social Network. Online social net-

work has become a popular Internet service. Based on traces
from Flickr, YouTube, LiveJournal and Orkut, Mislove et
al. [20] study the topology of the social graph, and confirm
the power-law, small-world, and scale-free properties of the
online social network. Krishnamurthy et al. [7] investigate
Twitter, and identify the distinct classes of Twitter users
and their behaviors, as well as the geographic growth pat-
terns of the social network.
In an online social network, contents spread among users

by their social activities. A number of research efforts have
been devoted to studying the propagation of information in
online social networks. Kwak et al. [16] investigate the im-
pact of users’ retweets on information diffusion in Twitter.
Dodds et al. [12] use the epidemic model to study the infor-
mation propagation, where a piece of information is regarded
as an infective disease that spreads via the social connec-
tions. Kempe et al. [15] investigate how to maximize the
spread of influence in an online social network, and Hartline
et al. [13] utilize such maximum spread to achieve revenue
maximization.

In this paper, we will study how to connect the social prop-
agation and the social video replication, i.e., how statistic
information about the video propagation can be utilized to
guide the video content replication in a joint edge-cloud and
peer-assisted architecture.

Social Video Replication. Many architectures have been
proposed in large-scale video service systems, including (1)
the server-based architecture, e.g., CDN and cloud-based
approaches [23], (2) the client-based architecture, e.g., the
P2P content distribution [18], and (3) the hybrid architec-
ture, e.g., a hybrid CDN and P2P distribution framework
[30]. For Internet-scale social video service, replicating the
videos at different geographic regions is a promising ap-
proach to provide good service quality to users [6].

However, online social network has greatly changed the as-
sumptions in traditional replication algorithms [8], e.g., the
distribution of video contents is shifted from a“central-edge”
manner to an “edge-edge” manner, resulting in the close-
to-uniform popularity distribution. Li et al. [17] study the
video sharing in the online social network, and observed the
skewed popularity distribution of contents and the power-
law activity of users. To better serve such social video con-
tents, some social-aware video replications have been pro-
posed. Pujol et al. [24] investigate the difficulties of scaling
online social networks, and designed a social partition and
replication middle-ware where users’ friends’ data can be
co-located in the same server. Tran et al. [26] study the
partition of contents in the online social network by taking
social relationships into consideration. Nguyen et al. [22]
study how to improve the system efficiency in case of server
failures by taking social locality into consideration. Wang
et al. [27] observe that a social network can be used to help
predict the video access pattern in a standalone video-on-
demand system. Wu et al. [29] study how to minimize the
cost in social media migration among servers at different re-
gions. Cheng et al. [11] study the social media partition to
balance the server load and preserve the social relationship.

This paper focuses on effectively distributing videos gen-
erated and propagated inside the social network. We will
study how to improve the user experience of watching social
videos by exploring a joint edge-cloud and P2P design based
on the propagation characteristics of social videos extracted
from real-world measurement.

3. MEASUREMENT OF PROPAGATION
In this section, we investigate how videos are generated

and distributed among users in the online social network.

3.1 Measurement Setup
In our measurement, we have collected traces from Ten-

cent Weibo [2], which is a microblogging website, where users
can broadcast a message including at most 140 characters
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Figure 1: Connection be-
tween Weibo and video
sharing systems.
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Figure 2: Imports and
re-shares over time.

to their friends. Tencent Weibo features several social ac-
tivities in the system, e.g., online chatting with friends who
mutually follow each other. We obtained Weibo traces from
the technical team of Tencent, containing valuable runtime
data of the system in 20 days (October 9 – October 29) in
2011. Each entry in the traces corresponds to one microblog
posted, including ID, name, IP address, geographic location
of the publisher, time stamp when the microblog was posted,
IDs of the parent and root microbloggers if it is a re-post,
and contents of the microblog. The traces were recorded on
an hourly basis.
We are focused on microblogs with video links which are

imported from external video sharing websites. In partic-
ular, we have collected 350, 860 video links from 5 popular
video sharing sites: Youku, Ku6, Tudou, Xunlei and Ten-
cent Video. We then retrieve the microblogs which are re-
lated to these video links, i.e., the microblogs either include
the video links to these videos in the contents or they are
re-shares of the ones that include the links. These video
links cover 1, 923, 507 microblogs in the time span. Besides,
we also retrieve the profiles of users who have posted these
microblogs, e.g., their friend lists. In our measurement, we
use the number of microblog posts to estimate the number
of video views, in a sense that the microblog publishers can
represent a sample of users who have watched the videos.
Fig. 1 illustrates how Tencent Weibo are connected with

the video sharing sites. After a video is published on a video
sharing site, the link to that video can be imported by users
to Weibo. We will regard the import as the video generation
by that user. Then users who are socially connected to that
user can be reached by the imported video and further re-
share the video.

3.2 Generation, Distribution and Popularity
of Social Video Contents

Video Generation and Distribution. On Tencent Weibo,
users generate videos by importing the links to the videos
from the external video sharing sites, and distribute the
videos by re-sharing the microblogs containing the links.
Import and re-share are the most important activities that
determine how videos reach users in the online social net-
work. Fig. 2 illustrates the number of imports and re-shares
of the targeted videos over time. We observe that (1) more
users are generating videos instead of distributing them in
the online social network, and (2) the number of imports
shows more obvious weekly pattern than the number of re-
shares, indicating more randomness in users’ re-sharing of
social video contents.
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Figure 3: Number of im-
ports of a video versus its
rank.
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Figure 4: Number of re-
shares of a video versus
its rank.

Popularity Profiles. Videos can reach many people in the
online social network by users’ importing and re-sharing,
which determine the video propagation range. We observe
that different videos attract quite different levels of imports
and re-shares, resulting in a skewed popularity distribution
of videos in the online social network. We study the popular-
ity distribution of the social video contents, in terms of their
imports and re-shares in a given time period of 1 day. In
Fig. 3, videos are ranked in their import number’s descend-
ing order. Each sample illustrates the number of imports
of a video versus the rank of that video. We observe that
the video import popularity is highly skewed, following a
zipf-like distribution with a shape parameter of s = 0.8906.
Similarly, Fig. 4 illustrates the number of re-shares versus
the rank of the video, and we observe the video re-share
popularity also follows a zipf-like distribution with a shape
parameter of s = 0.9519. The popularity distributions of
the import and re-share indicate that there are a dominate
fraction of unpopular videos in the online social network —
it is of great challenge to serve all the videos to users locally,
with limited storage and network resources.

We further investigate in which types of social groups are
these unpopular videos propagating. By randomly collect-
ing 50 videos with different propagation size (the number
of users involved in a video’s propagation), we explore the
correlation between the propagation size and the clustering
coefficient of the social group formed by the users involved in
the propagation. In Fig. 5, each sample illustrates the video
propagation size versus the clustering coefficient of the cor-
responding social group [1]. We observe a relatively strong
correlation between the propagation size and the clustering
coefficient. The reason is that the unpopular videos tend
to be shared among small social groups that are relatively
closely connected (socially). The trend of many unpopu-
lar videos to be shared among small social groups results in
a close-to-uniform popularity distribution, which makes the
replication extremely challenging.

3.3 Characteristics of Social Video Propaga-
tion

The above measurement has demonstrated the challenges
in the replication of social video contents. Next, we study
the characteristics of the social video propagation to guide
the replication design.

3.3.1 Social Locality in Propagation
The generation and re-share of a video on Weibo form a

propagation tree which is rooted by the user who generates
the video. Any user who re-shares the video will become
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versus the clustering coef-
ficient of social group.
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Figure 6: The number of
propagation trees versus
the propagation size.
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propagation trees versus
the propagation depth.
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Figure 8: The import
number of a region versus
the rank of the region.

a new leaf node in the propagation tree. Fig. 6 shows the
propagation size of videos in 5 different categories. Each
sample illustrates the number of propagation trees (with the
same propagation size) versus the size of these propagation
trees. We observe that the size of most propagation trees
is very small, e.g., about 90% of the propagation trees are
smaller than 100. Next, we study the propagation depth,
which is defined as the average number of social hops be-
tween users in the propagation tree and the root user. Fig. 7
illustrates the propagation depth of videos in the same 5 cat-
egories. Each sample represents the number of propagation
trees (with the same propagation depth) versus their prop-
agation depth. We observe that in most of the propagation
trees, the depth does not exceed 10, i.e., users who re-share
the video are socially close to the root user (with a small
number of social hops between them).
The limited propagation size and propagation depth in-

dicate that in each propagation tree, only users within a
limited social range will be reached by the video. This ob-
servation motivates us to design the peer-assisted replication
so that users who are both socially and geographically close
to each other, can help distribute the video contents among
themselves effectively.

3.3.2 Geographical Locality in Propagation
Users who generate, re-share and view the social videos

are located in a variety of regions over the world. For Internet-
scale video service providers, when performing replication
for the social video contents, they need to strategically de-
termine the regions (where datacenters are deployed) where
the videos should be stored and served. To this end, we in-
vestigate how a social video content propagates among dif-
ferent geographic regions.
First, we observe that the popularity of different regions

is quite different. We define the import number of a region
as the number of total imports issued by users in the re-
gion. In Fig. 8, we rank 41 regions in their import number’s
descending order. Each sample in this figure illustrates the
import number of a region versus the rank of the region. We
observe that the popularity distribution of regions with re-
spect to their import numbers follows a logarithm function
y = 150000− 35000 log(1.443x). This observation indicates
that it is not necessary to replicate each video to all the re-
gions. A video should be replicated to a region only when
the region is in the video’s propagation range.
Next, we explore how to utilize the propagation informa-

tion to estimate the geographical range of the video propa-
gation. We observe that the propagation size can be used
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Figure 10: Number of
re-shares versus the time
lag.

to predict the geographical propagation range. Fig. 9 il-
lustrates the correlation between the number of regions in-
volved in the video propagation and the propagation size
for different videos. We observe that a large propagation
size generally results in more regions involved in the prop-
agation. The relationship follows a logarithm function y =
6.5 log(0.5682x). In PSAR, the propagation size is utilized
to determine whether a video will be replicated to more re-
gions. Intuitively, a video should be replicated to more re-
gions when the predicted number of regions involved in the
propagation is larger than the number of regions it has al-
ready been replicated to.

3.3.3 Temporal Locality in Propagation
In the online social network, we observe that users are

more likely to re-share new video contents, i.e., videos that
are recently imported or re-shared. Fig. 10 illustrates the
number of re-shares of a video in a time slot (1 hour) versus
the time lag since it is generated. We observe that most of
the re-shares happen in the recent hours, and the re-share
number against the time lag follows a zipf-like distribution
with a shape parameter s = 1.5070. This observation indi-
cates that new videos in the online social network can attract
more re-shares, leading to more viewers of the videos. We
will also incorporate the temporal locality into the design of
PSAR.

4. ARCHITECTURE OF PSAR
Based on the characteristics of the social video propaga-

tion, in this section, we present the conceptual architecture
of PSAR and its key components, respectively.
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4.1 Conceptual Architecture
We employ a joint edge-cloud and P2P architecture to

replicate the social video contents, where the edge-cloud can
support the time-varying bandwidth and storage allocations
requested by different regions, while the peers are able to
help contribute to each other in similar social groups. Fig. 11
illustrates the conceptual architecture of our design. In this
figure, two overlays are presented as follows: (1) social prop-
agation overlay based on the social graph, which determines
the video propagation among friends, i.e., users after gener-
ating a video, can share the video with their direct friends,
who will further re-share the video to more people, and (2)
delivery overlay which determines how video contents are
delivered from edge-cloud servers to users or among them-
selves in a P2P paradigm. In this architecture, on one hand,
we make use of the edge-cloud servers distributed at different
geographic regions, to serve the social videos to users from
different regions; on the other hand, we let peers cache the
video contents in their local storage, so that they can help
each other to download the videos. In the design of PSAR,
we will study the edge-cloud replication on how videos are
replicated to edge-cloud servers, as well as the peer-assisted
replication on how videos are cached at a peer.

4.2 Framework and Key Components
In our measurement, we have shown that the social video

propagation demonstrates social locality, geographical local-
ity and temporal locality. In PSAR, we design three indices
based on the social propagation to guide the replication: the
geographic influence index which represents a video’s prop-
agation range among different regions, the content propa-
gation index which represents the video’s ability to attract
new users in the online social network, and the social in-
fluence index which represents the possibility for a video to
be requested by a peer’s local friends. Based on the three
replication indices, we design the edge-cloud replication and
the peer-assisted replication, respectively.

4.2.1 Edge-Cloud Replication
Purpose. In the edge-cloud video replication, video con-

tents are generally replicated to servers located in different
geographic regions. The main purpose of the edge-cloud
replication is for users at different locations to download the

wanted videos from their local servers, which are located in
the same regions with the users, to improve the video service
quality [6].

Redesign. We redesign the edge-cloud replication by tak-
ing the social propagation into account. We first select the
videos that are the most likely to propagate across geo-
graphic regions, by evaluating the videos’ geographic influ-
ence index we design. Since the selected videos are more
likely to attract users from more regions in the future, we
replicate them to more regions so that users can be better
served by the local servers. After that, based on the social
influence index, which reflect their popularity in the near
future, we determine which regions to replicate these videos
to and how much bandwidths to allocate for the videos. We
will present the detailed design in Sec. 5.2.

4.2.2 Peer-Assisted Replication
Purpose. The reason we propose a joint edge-cloud and

peer-assisted paradigm in the social video replication lies
two-folds. (1) Social videos are generally shared in small so-
cial groups, resulting in the close-to-uniform popularity dis-
tribution of the videos, which cost a huge amount of server
resource to be distributed to users. To scale the delivery
system, peers’ resource is in demand. (2) Users typically
share videos with their friends, who are observed geograph-
ically close to each other [25] — these socially connected
users tend to have good Internet connectivity between each
other to perform the peer-assisted video download [14].

Redesign. In traditional peer-assisted video distribution,
LRU and LFU-based cache replacement algorithms are widely
used. Such algorithms only depend on the static popularity
of the video contents, which cannot achieve good perfor-
mance when the access patterns of videos are affected by
the social activities in the online social network. Based on
the social influence index summarized from the propagation
pattern, we redesign the peer cache replacement algorithm.
In particular, we let peers cache videos that not only improve
the general peer contribution (i.e., the fraction of video con-
tents upload by peers over all videos uploaded), but also im-
prove the possibility for peers to serve the unpopular videos
to their local friends. These friend users can benefit from
the good Internet connectivity to the local peers. We will
present the detailed design in Sec. 5.3.

5. SYSTEM DESIGN OF PSAR
In this section, we first present the design challenges in

PSAR. Then, we establish the connection between the so-
cial video propagation and the video replication. After that,
we present the detailed design of PSAR based on the con-
nection.

5.1 Challenges in the Design of PSAR
In PSAR, the replication of social video contents is facing

great resource-allocation challenges in the presence of multi-
ple video propagations. Fig. 12 illustrates an example when
there are only two videos. In this figure, the circles repre-
sent users in the online social network, which are located
in different geographic regions, e.g., region 1 and region 2.
User A generates and shares video a in time slot T , then
the video is re-shared by his friends C and D in time slot
T+1. At the same time, another user B generates a different
video b. Video a and video b will propagate across the social
connections, and the two propagation trees may intersect in
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the same region or at the same peer, e.g., both region 1 and
region 2 are involved in the two propagation trees, and both
videos can reach user K in time slot T + 3. The resource
allocation has to determine (1) how to serve video a and b
by the edge-cloud servers in region 1 and 2, and (2) how to
cache video a and b at the peers to help others. It is of great
challenge when many videos are propagating at the same
time. The two problems will be discussed in the edge-cloud
replication and the peer-assisted replication, respectively.

5.2 Edge-Cloud Replication
The edge-cloud provides the backup servers when peers

are not able to download videos from the neighboring peers.
We design two replication indices to guide the edge-cloud
replication. When performing the edge-cloud replication,
we first select the videos to be replicated and determine
regions they should be replicated to, then we reserve upload
bandwidth at edge-cloud servers for them.

5.2.1 Social-Aware Edge-Cloud Replication Indices
To perform social-aware replication at the edge-cloud servers,

we design two replication indices based on the social propa-
gation.
Geographic Influence Index. When performing video repli-

cation, we need to find out the videos that may propagate to
more regions in the future. We deign the geographic influ-
ence index for that. In our measurement study, we observe
that the number of propagation regions can be predicted
from the propagation size of the video. Based on our mea-
surement, we design the geographic influence index, which
is calculated as follows:

g(T )
v = c1 log(c2s

(T )
v ),

where s
(T )
v is the propagation size of the propagation tree of

video v in time slot T . Large g
(T )
v indicates that more regions

will be involved in the propagation of the video. To achieve

a better video download quality, a video with a larger g
(T )
v

should be replicated to more regions to serve users locally.
In our experiments, we use c1 = 6.5, c2 = 0.5682 which are
consistent with our measurement results. Based on the geo-
graphic influence index, we can predict whether the regions
where the video has been replicated are enough.
Content Propagation Index. We design a content propa-

gation index to evaluate the strength of a video’s propaga-
tion in time slot T based on the propagation information as

follows: (1) the current propagation size (s
(T )
v ); (2) the cur-

rent propagation depth (h
(T )
v ); and (3) the time lag since the

propagation tree is formed (τ
(T )
v ). The content propagation

index is defined as follows:

e(T )
v = zs(τ

(T )
v )(s(T )

v /h(T )
v ),

where zs(τ
(T )
v ) is a decreasing function to make use of the

temporal locality, which can adjust the content propagation

index according to τ
(T )
v so that more recently generated or

shared videos will have larger content propagation index.
Based on our observation in Sec. 3.3.3, zs(t) is defined as
follows:

zs(t) = 1/(ts
N∑

k=1

1

ks
),

where s is the zipf shape parameter and N is the number
of hours between the initial time of the earliest video and
the latest video. In our experiments, we let s = 1.507 and
N = 600, which are the same as used in our measurement of

Tencent Weibo’s traces. In our design, e
(T )
v will be used to

guide the replication. Larger e
(T )
v indicates that more users

can join the propagation tree in time slot T . The rationale

of e
(T )
v lies as follows: (1) Larger s

(T )
v indicates that more

users can be reached by the video, and these users are the
potential viewers (downloaders) of video v; (2) According

to the social locality, small h
(T )
v indicates that users in the

propagation tree are still socially close to the root user and
the video can propagate more; (3) According to the temporal

locality, large τ
(T )
v slows down the propagation. Based on

the content propagation index, we will determine how much
bandwidth we will reserve for a video in the future time slot
in PSAR.

5.2.2 Video and Region Selection
Initial Replication. After video v is first generated by

a user in the online social network, it will be stored by a
server which is closest to the user’s friends. Let dr,i, i ∈ Fv

denote the geographic distance between region r and user
i, where Fv is the set of friends of the root user of video v
(“distance” based on Internet connectivity measurement can
also be used, e.g., bandwidth or RTT). The initial region is
then selected by solving the problem as follows:

rv = argmin
r∈R

∑
i∈Fv

dr,i,

where R is the set of regions that can be used for the repli-
cation, and rv is the region selected for the replication.

Selecting Existing Videos for Replication. According to
our measurement study, we observe that although there are
a massive number of videos in the online social network, in
each time slot, only limited videos are shared among users.
In particular, we observe that among 350, 860 videos that
we study in our measurement, only 1919 of them are re-
shared in one time slot (1 hour) on average. Thus, in each
time slot, only a little fraction of existing videos need to be
replicated to improve the service quality. How should we
select the candidate videos for replication? We observe that
the overlapped fraction of the common videos that are re-
shared in time slot T and T − 1 over all videos re-shared
in time slot T can be as large as 49%. In our design, the
replication video set V(T ) is constructed as follows. (1) We

build a candidate video setW(T ) by selecting videos that are
imported or re-shared in the previous time slot. In partic-
ular, we randomly choose 80% of the videos that have been



imported or re-shared in the previous time slot and 20% of
the videos among the most popular ones in history. (2) We

choose the videos inW(T ) that have the geographic influence

index g
(T )
v larger than θ

(T )
v , which is a control parameter de-

pending on the current replication status of video v, to form
the video replication set V(T ). In our experiments, we let

θ
(T )
v = 0.8|R(T )

v |, where R(T )
v is the set of regions that v

has been replicated to. The rationale is that a video should
be replicated to more regions if its current replication is un-
der the requirement estimated from the geographic influence
index.
Selecting Replication Regions for Videos in V(T ). After
V(T ) has been constructed, the videos in V(T ) need to be
replicated to more regions. Since these videos are the can-
didates that can attract users from more regions, we have
to determine which videos need to be replicated to which
regions. In our design, we extend the replication of a video
to one more region each time. The selection of the region is
similar to the approach used in the initial region selection.
We minimize the geographic distance between the region and
the potential users who may join the propagation tree. Let

L(T )
v denote the set of users who join the propagation tree

in the previous time slot. The selection is as follows:

rv = arg min
r∈R−R(T )

v

∑
i∈

∪
k∈L(T )

v
Fk

dr,i,

where Fk is the friend set of user k. The rationale is that
users in L(T )

v are the ones who join the propagation tree in
the previous time slot, and it is likely for them to attract
new users of the video, due to the temporal locality of the
propagation. We utilize these users’ friends’ locations as a
sample of all the users that can join the propagation tree,
and select the region that is closest to all the users. The
benefit of always extending a video to a new region in the

replication (i.e., rv is selected from R−R(T )
v ) is that users

in a popular propagation tree can choose more regions to
download the video contents from, and our scheme improves
the possibility for them to select the preferred regions.

5.2.3 Bandwidth Reservation
In each schedule round, we need to allocate upload band-

widths at the edge-cloud servers for the videos replicated. In
our design, the bandwidth reservation depends on the social
propagation strength, which can be evaluated by the con-

tent propagation index e
(T )
v . Let Vr denote the set of videos

that are replicated in region r, the bandwidth reservation is
then performed as follows:

bv,rv = Brve
(T )
v /

∑
v∈Vrv

e(T )
v , ∀v ∈ V(T ),

where bv,rv is the amount of bandwidth to be reserved for
video v in the selected replication region rv when the region
is fully requested by users of different videos; and a video
can extend to use more than bv,rv when the region is not
fully loaded. Br is the upload capacity of region r. The
rationale of the bandwidth reservation is that videos with
larger e

(T )
v tend to attract more users in the propagation

in the near future, and more upload bandwidth should be
allocated for these videos’ propagation to benefit the poten-
tial downloaders. Our edge-cloud replication algorithm is
illustrated in Algorithm 1.

Algorithm 1 Edge-Cloud Replication Algorithm.

1: procedure Video and Region Selection
2: V(T ) ← Φ
3: if v is newly published then
4: V(T ) ← V(T ) ∪ {v}
5: rv ← argminr∈R

∑
i∈Fv

dr,i
6: else
7: if v ∈ W(T ) and g

(T )
v > θ

(T )
v then

8: V(T ) ← V(T ) ∪ {v}
9: rv ← argmin

r∈R−R(T )
v

∑
i∈

∪
k∈L(T )

v
Fk

dr,i

10: end if
11: end if
12: end procedure
13: procedure Bandwidth Reservation
14: for all v ∈ V(T ) do
15: if v is replicated at region rv then

16: bv,rv ← Brve
(T )
v /

∑
v∈Vrv

e
(T )
v

17: end if
18: end for
19: end procedure

5.2.4 Reduction of Replications
In our measurement study, we have shown the temporal

locality of the social video propagation, i.e., after a period
of time since its publication, a video content will not be
able to attract as many users as before. Though the band-
width reservation can adapt to reduce the upload capacity
allocated for a video that becomes less popular, the repli-
cations of the video still occupy the storage at edge-cloud
servers. Thus, we need to reduce a video’s replications on
the edge-cloud servers to make room for new videos gener-
ated by users in the system. We let each edge-cloud server
determine the replication reduction as follows: (1) the region
of a video’s initial replication acts as a permanent backup
of the video; (2) other regions of a video’s extended repli-
cations locally dump the video contents according to their
geographic influence index, i.e., videos with a smaller geo-
graphic influence index are more likely to be removed from
an edge-cloud server to make room for new ones.

5.3 Peer-Assisted Replication
In Sec. 4, we have justified that the unique propagation

pattern makes it very promising to utilized the peer-assisted
paradigm to allocate certain amount of resource from the
users to replicate the video contents, and peers (users) can
serve their social neighbors with good Internet connectivity.
In our peer-assisted replication, we assume users download
video contents according to their own demands, and we de-
sign the social-aware cache replacement strategy for peers to
determine which videos are cached to help other users, since
peers’ cache strategy can greatly affect the performance of
a P2P system [19].

5.3.1 Social-Aware Cache Replacement
In PSAR, a peer locally performs the cache replacement

using not only the perceived video popularity, but also the
local social factors. In particular, the following information
is used at peer i: (1) the local popularity which is the number
of requests for video v received by peer i, denoted as pvi ; (2)
the fraction of peer i’s friends that can join the propagation
tree of video v, denoted as fv

i . f
v
i is calculated by historical



records for different video categories, i.e., peer i keeps a
record of the fraction of friends that have been attracted in
each category in the history; and (3) the time lag between
the propagation tree is constructed and the time when the

peer re-shares the video, i.e., τ
(T )
v .

Social Influence Index. Based on the social propagation,
we design a social influence index as follows:

qv = zs(τ
(T )
v )(pvi f

v
i ).

In the peer-assisted replication, videos with smaller social
influence index are more likely to be dumped by the peer.
The rationale of the social influence index is that larger pvi f

v
i

indicates that peer i can potentially attract more users to

re-share video v from its friends in the future, and τ
(T )
v is uti-

lized to reflect the temporal locality. Large social influence
index indicates that the video can be potentially downloaded
by more local friends, and the peer should keep it to serve
these friends. Thus, in our cache replacement algorithm, the
peer will try to dump videos with the smallest qv’s until the
capacity is enough for new videos.

5.3.2 Collaboration with Edge-Cloud Servers
In the distribution of social video contents, edge-cloud

servers compensate the upload capacities when peers are
not able to fully serve all the requests. The collaboration be-
tween the edge-cloud servers and the peers in PSAR is based
on the replication indices as follows: (1) for the popular
videos with large geographic influence and content propaga-
tion indices, they can be replicated to many regions to serve
different users, who can download the contents from either
the neighboring peers or the local edge-cloud servers; (2) for
the unpopular videos, they are usually not widely replicated
by the edge-cloud servers because their geographic influence
index is small. However, a large fraction of such videos are
shared in small social groups according to our measurement
results, in which users can download the videos from their
local friends, according to the social influence index. In both
cases, users can achieve a good local download quality.

6. PERFORMANCE EVALUATION

6.1 Experiment Setup
Based on the same traces used in our measurement, we

select 9318 videos from the original traces in the last 10
days for our experiments. These videos propagate among
the regions captured by Tencent Weibo. Peers are located
in the regions according to their profiles, and an edge-cloud
server is deployed in each region. In our experiments, we
assume the records of imports and re-shares indicate users’
downloads of these videos. Thus, these records are used to
drive users’ downloads in the simulation. We also assume
the user-generated videos have the same short duration [10],
and we let the replication unit be a whole video for both
servers and peers. We normalize the geographic distance
between peers and servers in the evaluation. In the peer-
assisted replication, peers exchange their cache states with
socially connected neighbors periodically, so that they are
aware of what can be downloaded from these social neigh-
bors. When downloading from other peers, a tracker server
is employed to help peers find each other. A peer downloads
a video according to the following rules: (1) It first tries
to download the video from neighboring peers, where peers
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Figure 13: Number of requests served by local edge-
cloud servers and local peers.

that are socially connected in the same region are priori-
tized; (2) If no peer is able to serve the video, it will resort
to the edge-cloud servers in the same region; (3) If the local
servers are not able to serve it, it will try other servers with
the smallest geographic distances.

We first show the performance of PSAR over time. Fig. 13
illustrates the fraction of requests served by their local edge-
cloud servers over all server-served requests and the frac-
tion of requests served by local peers over all peer-served
requests, respectively. We observe that our replication can
reach relatively high levels of requests that are served by
local edge-cloud servers and local peers (58.7% and 28.5%,
respectively). Meanwhile, in PSAR, we observe that the lo-
cal edge-cloud servers and peers can compensate each other
to serve the users over time. Next, we will evaluate the
detailed performance of PSAR.

6.2 Efficiency of Edge-Cloud Replication
In the edge-cloud replication, we compare PSAR with the

following algorithms that are widely used in real-world video
service systems. (1) A popularity-based replication, where
videos are prioritized to be replicated or removed according
to the videos’ historical popularity, i.e., the number of to-
tal imports and re-shares in the recent period. The videos
selected for replication are assigned to regions so that the
load (overall popularity of videos) can be balanced among
the regions. In each region, the edge-cloud server allocates
upload bandwidth for a video proportionally to its recent
popularity. (2) A random approach where videos are repli-
cated randomly in different regions and reserved with a ran-
dom amount of upload bandwidth. Note that these two
algorithms are also executed periodically in each time slot.

Fraction of Locally Served Requests. We first evaluate how
many requests of videos can be served by local servers using
different replication algorithms. We define a local download
ratio as the fraction of requests that are served by users’ lo-
cal servers, i.e., servers in the same geographic region with
the users issuing the requests. Fig. 14 illustrates the local
download ratio versus the average upload capacity allocated
at an edge-cloud server. We observe that our edge-cloud
replication in PSAR can greatly improve the local down-
load ratio, and as the available server bandwidth capacity
grows, the local download ratio in PSAR increases faster
than the popularity-based and random algorithms, indicat-
ing that users can benefit more from increased server re-
sources in PSAR.

Normalized Download Geo-Distance from Servers. We
also evaluate the normalized download distance, which is de-
fine as the average normalized geographic distance between
the users and the servers from which they download the
videos. Fig. 15 illustrates the normalized download distance
versus the average server capacity. We observe that PSAR
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Figure 14: Local down-
load ratio versus the
server capacity.
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Figure 17: Peer contri-
bution versus the num-
ber of social hops be-
tween the pair of peers.

achieves a smaller download distance than the other two al-
gorithms. The reason is that by inferring the geographic
influence index, the content propagation index and users’
social connections, better prediction of a video’s propaga-
tion range can be utilized to perform the region selection.
Similarly, we observe that the normalized download distance
in PSAR decreases faster than other algorithms when server
capacity increases.
Number of Replications. We further study the impact of

the number of replications of a video on the service qual-
ity. Fig. 16 compares the local download ratio of a video in
the three strategies in terms of different numbers of video
replications. We observe that in the random replication, all
the videos have the similar number of replications — this
is the reason for its inefficiency for contents that are either
very popular or only propagated among small social groups.
The replication number in the popularity-based replication
is similar to that in PSAR; however, PSAR is more effec-
tive to replicate videos that are propagated in small social
groups and the ones that are highly propagating across many
regions.

6.3 Efficiency of Peer-Assisted Replication
We also evaluate the efficiency of the peer-assisted replica-

tion. We compare PSAR with (1) an LFU-based peer cache
replacement algorithm where videos least requested recently
(a reference time window of 24 hours) are dumped to make
room for new ones, (2) an LRU-based cache replacement al-
gorithm where videos that have not been recently requested
are dumped, and (3) a random replacement algorithm where
randomly selected videos are dumped.
Local Cache Hit Ratio. We first evaluate the local cache

hit ratio, which is defined as the fraction of videos that can
be directly downloaded from the socially connected peers.
Higher local cache hit ratio indicates better local down-
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Figure 18: Local cache
hit ratio versus peer’s ca-
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Figure 19: Normalized
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load performance, since we have already justified that peers
which are socially connected to each other are also geograph-
ically close to each other, resulting in a better Internet con-
nectivity. Fig. 18 illustrates the local cache hit ratio versus
the storage capacity at each peer (the number of videos that
can be stored). We observe that our design significantly out-
performs other strategies. As the cache capacity increases,
the cache hit ratio in our design improves much faster than
other algorithms. The reason for the inefficiency of LFU and
LRU is that many unpopular videos cannot be efficiently
cached according to users’ historical requests; while they
can be addressed in our design where peers actively cache
them for their friends based on the social influence index.
We also observe that LFU and LRU have achieved the sim-
ilar ratio, because LFU with a small reference time window
acts similar to LRU, since requests are distributed close to
the time when the user generates the content in the online
social network.

Normalized Download Geo-Distance from Peers. We also
evaluate the normalized geographic distance between the
neighboring peers. Fig. 19 illustrates the average normal-
ized download distance between peers who upload videos to
each other versus the cache storage capacity at each peer.
We observe that our social-aware cache replacement achieves
a much smaller geographic download distance than the other
algorithms, meaning that a peer is more likely to find a close
neighbor to download the videos from, thereby achieving a
better Internet connectivity for both sides. We also observe
that when a large cache capacity is allocated at a peer, our
design benefits more than other algorithms.

Social-Aware Contribution. We further investigate the
P2P networks by studying which type of peers upload con-
tents to the users. Fig. 17 illustrates the fraction of requests
served by peers versus the number of social hops between
the pair of peers. We observe that in our design, much more
requests are served by their direct friends or two-hop friends
in the social network, so that more local peers can be used
to upload the contents. The reason is that in PSAR, videos
are cached according to not only the requests of users, but
also the level of friends that can be influenced by the video
in the future.

7. CONCLUDING REMARKS
This paper addresses the challenges in the replication of

social video contents, resulting from the massive number
of the videos generated by users and the close-to-uniform
popularity distribution. By conducting extensive measure-
ment of traces obtained from a representative online social
network system, we observe unique characteristics, which



demonstrate social, geographical and temporal localities in
the propagation. Based on the social propagation character-
istics in the propagation, we propose a propagation-based
social-aware replication strategy to serve such social video
contents to users. Specifically, we design three replication
indices: a geographic influence index, a content propagation
index and a social influence index, which can guide the re-
gion selection, bandwidth reservation and cache replacement
in the joint edge-cloud and peer-assisted replication. Ex-
tensive experiments driven by the real-world traces further
demonstrate the effectiveness and superiority of our design.
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